乘法
在數學中,乘法(multiplication)是加法的連續運算,同一數的若干次連加,其運算結果稱為積(product)。
須注意的是,華人地區有將四則運算的被運算數和運算數統一位置,所以被乘數放前面,乘數放後面。唸作「a 乘以 n」或「n 乘 a」。 但在其它語言(如英文)中,有可能乘數是放在前的,寫作 ,唸作「n times a」。
表示法
乘法可以用幾種方法表示。以下的式子表示「五乘以二」:
古代常用的方法是將兩個數並排,沒有甚麼特別的符號來表示乘法。
以「 」表示乘法是威廉·奧特雷德最先使用,分別於一篇現時相信是於1618年他寫的附錄,和約於1628年寫作的、1631年出版的書《數學之鑰》(Clavis Mathematicae)內出現。以「 」表示乘法是現在最流行的寫法。在電腦文書中,也有為方便鍵盤輸入而以小寫英文字母「x」替代「×」。
以「 」表示乘法現在用於德國和法國等國家,最早由托馬斯·哈里奧特在1631年出版的著作使用,但對這個用法較有影響力的人是萊布尼茲。
因為星號「 」是鍵盤必備的符號,電腦常用星號表示乘號,第一次在計算機使用這個用法的是FORTRAN(福傳)程式語言,事實上可以追溯到更早——1659年,Johann Rahn(1622年-1676年)在Teutsche Algebra一書中首次使用;但筆算時很少使用星號。
代數中,乘號經常省略掉,形式如 和 。若變量多於一個字母,容易使人混淆。這種表示法不會用於只有數字時,即 不會表示成 。
定義
兩個整數的積是:
這是「將m加到自己n次」的簡化說法。更清晰來說:
使用上面的定義,我們很易找到一些乘法的性質:
將任何數乘以一都會等於該數本身,即 ,稱為單位律。
將任何數乘以零,即是甚麼也沒做過,結果就是零,即 。
歷史
最早最詳細的關於十進位制乘法的規則,首見西元400年左右孫子算經。孫子乘法在9世紀經花拉子米介紹而流行於阿拉伯國家,13世紀被翻譯成拉丁文而流行西方。
印度的格子乘法在唐代流入中國,在9世紀初經花拉子米介紹到阿拉伯,但都未能流行。