硫脲有機催化

有機催化領域, (硫)脲有機催化指利用脲或硫脲來加快有機反應速率或控制立體化學。與經典的催化方法不同,這種催化方法的利用的是底物和(硫)脲之間形成的氫鍵作用(可以認為發生「部分質子化」)。(硫)脲有機催化的應用包括立體選擇性應用與非立體選擇性應用[1]

歷史

Kelly、Etter、Jorgensen、Hine、Curran、Göbel和De Mendoza(參見下文引用的參考文獻)在非金屬小分子氫鍵催化領域作出了開創性貢獻。Peter R. Schreiner及其同事確定並引入了缺電子的硫脲衍生物作為氫鍵有機催化劑。Schreiner的選擇的硫脲為N,N'-二[3,5-二(三氟甲基)苯基]硫脲,這種催化劑結合了雙氫鍵介導的有機催化劑的所有結構特徵:

  • 缺電子
  • 具有剛性結構
  • 苯環的3,4 和/或 5 位上具有非配位吸電子取代基
  • 3,5-二(三氟甲基)苯基是優選的取代基

催化劑-底物相互作用

硫脲衍生物和羰基底物之間形成了兩個氫鍵。(硫)脲中共面的兩個氨基取代基是氫鍵的給體。[2] [3] [4] [5] 方酰胺利用雙氫鍵進行催化的性能通常優於硫脲。 [6]

 
Schreiner使用的N,N'-雙[3,5-雙(三氟甲基)苯基硫脲形成的酮絡合物,具有明顯的雙氫鍵螯合的特徵 [4] [7]

硫脲有機催化劑的優點

(硫) 脲是符合綠色化學理念要求的催化劑,在應用中具有以下優勢:

  • 由於氫鍵的結合焓相對較低,因此(硫)脲催化劑的活性通常不會被產物抑制,但是可以特異性識別底物
  • 催化劑用量低(可以低至0.001 mol%)[3]
  • 高TOF (周轉頻率)值(高達 5,700 h-1[3]
  • 可以由(手性)伯胺與異硫氰酸酯反應合成,較為簡單、廉價
  • 性質較穩定,易於處理,不需要惰性氣體氛圍保護
  • 可以固定在固相聚合物上,便於催化劑回收與重複使用[3]
  • 可以在中性、溫和條件下進行催化(pKa(硫脲) = 21.0, DMSO)[8],可兼容對酸敏感的底物
  • 不含金屬,與傳統含金屬的路易斯酸催化劑相比毒性更小
  • 耐水,甚至在水溶液體系中仍然具有催化能力[9]

底物

可接受氫鍵的底物包括羰基化合物、亞胺、硝基烯烴。 Diels-Alder反應也可以受(硫)脲催化。

催化劑

已開發出多種單官能和雙官能的手性雙氫鍵(硫)脲有機催化劑,以催各種可以用於合成的有機反應。

拓展閱讀

  • Christian M. Kleiner, Peter R. Schreiner. Hydrophobic amplification of noncovalent organocatalysis. Chem. Commun. 2006: 4315–4017. 
  • Z. Zhang and P. R. Schreiner. Thiourea-Catalyzed Transfer Hydrogenation of Aldimines. Synlett. 2007, 2007 (9): 1455–1457. doi:10.1055/s-2007-980349. 
  • Wanka, Lukas; Chiara Cabrele; Maksims Vanejews; Peter R. Schreiner. γ-Aminoadamantanecarboxylic Acids Through Direct C–H Bond Amidations. European Journal of Organic Chemistry. 2007, 2007 (9): 1474–1490. ISSN 1434-193X. doi:10.1002/ejoc.200600975.  

參考文獻

  1. ^ Kotke, Mike; Schreiner, Peter R. (Thio)urea Organocatalysts. Petri M. Pihko (編). Hydrogen Bonding in Organic Synthesis. October 2009: 141 to 251 [2022-01-15]. ISBN 978-3-527-31895-7. (原始內容存檔於2014-01-15). 
  2. ^ Alexander Wittkopp, Peter R. Schreiner, "Diels-Alder Reactions in Water and in Hydrogen-Bonding Environments", book chapter in "The Chemistry of Dienes and Polyenes" Zvi Rappoport (Ed.), Volume 2, John Wiley & Sons Inc.; Chichester, 2000, 1029-1088. ISBN 0-471-72054-2.

    Alexander Wittkopp, "Organocatalysis of Diels-Alder Reactions by Neutral Hydrogen Bond Donors in Organic and Aqueous Solvents", dissertation written in German, Universität Göttingen, 2001. English abstract/download:

    Peter R. Schreiner, review: "Metal-free organocatalysis through explicit hydrogen bonding interactions", Chem. Soc. Rev. 2003, 32, 289-296. abstract/download:

    M. Kotke and P. R. Schreiner. Acid-free, organocatalytic acetalization. Tetrahedron. 2006, 62 (2–3): 434–439. doi:10.1016/j.tet.2005.09.079. M. P. Petri. Activation of Carbonyl Compounds by Double Hydrogen Bonding: An Emerging Tool in Asymmetric Catalysis. Angewandte Chemie International Edition. 2004, 43 (16): 2062–2064. PMID 15083451. doi:10.1002/anie.200301732. 

    Yoshiji Takemoto, review: "Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors", Org. Biomol. Chem. 2005, 3, 4299-4306. abstract/download: Mark S. Taylor, Eric N. Jacobsen. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angewandte Chemie International Edition. 2006, 45 (10): 1520–1543. PMID 16491487. doi:10.1002/anie.200503132. J. C. Stephen. Organocatalysis Mediated by (Thio)urea Derivatives. Chemistry: A European Journal. 2006, 12 (21): 5418–5427. PMID 16514689. doi:10.1002/chem.200501076. 
  3. ^ 3.0 3.1 3.2 3.3 3.4 Kotke, Mike; Peter Schreiner. Generally Applicable Organocatalytic Tetrahydropyranylation of Hydroxy Functionalities with Very Low Catalyst Loading. Synthesis. 2007, 2007 (5): 779–790. ISSN 0039-7881. doi:10.1055/s-2007-965917. 
  4. ^ 4.0 4.1 Schreiner, Peter R.; Alexander Wittkopp. H-Bonding Additives Act Like Lewis Acid Catalysts. Organic Letters. 2002, 4 (2): 217–220. ISSN 1523-7060. PMID 11796054. doi:10.1021/ol017117s. 
  5. ^ Kotke, Mike. Hydrogen-Bonding (Thio)urea Organocatalysts in Organic Synthesis : State of the art and Practical Methods for Acetalization, Tetrahydropyranylation, and Cooperative Epoxide Alcoholysis (Ph.D.). University Giessen/Germany. 2009 [2010-11-12]. (原始內容存檔於2012-08-29). 
  6. ^ Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Bifunctional Amine-Squaramides: Powerful Hydrogen-Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions. Adv. Synth. Catal. 2015, 357 (2–3): 253–281. doi:10.1002/adsc.201401003. 
  7. ^ Wittkopp, Alexander; Peter R. Schreiner. Metal-Free, Noncovalent Catalysis of Diels–Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water. Chemistry: A European Journal. 2003, 9 (2): 407–414. ISSN 0947-6539. PMID 12532289. doi:10.1002/chem.200390042. 
  8. ^ Bordwell, Frederick G.; Ji, Guo Zhen. Effects of structural changes on acidities and homolytic bond dissociation energies of the hydrogen-nitrogen bonds in amidines, carboxamides, and thiocarboxamides. Journal of the American Chemical Society. 1991-10-01, 113 (22): 8398–8401. ISSN 0002-7863. doi:10.1021/ja00022a029. 
  9. ^ A. Wittkopp and P. R. Schreiner. Metal-Free, Noncovalent Catalysis of Diels-Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water. Chemistry: A European Journal. 2003, 9 (2): 407–414. PMID 12532289. doi:10.1002/chem.200390042. 
  10. ^ Sigman, Matthew S.; Eric N. Jacobsen. Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries. Journal of the American Chemical Society. 1998, 120 (19): 4901–4902. ISSN 0002-7863. doi:10.1021/ja980139y. 
  11. ^ Sigman, Matthew S.; Petr Vachal; Eric N. Jacobsen. A General Catalyst for the Asymmetric Strecker Reaction. Angewandte Chemie International Edition. 2000, 39 (7): 1279–1281. ISSN 1433-7851. PMID 10767031. doi:10.1002/(SICI)1521-3773(20000403)39:7<1279::AID-ANIE1279>3.0.CO;2-U. 
  12. ^ Okino, Tomotaka; Yasutaka Hoashi; Yoshiji Takemoto. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society. 2003, 125 (42): 12672–12673. ISSN 0002-7863. PMID 14558791. doi:10.1021/ja036972z. 
  13. ^ Sohtome, Yoshihiro; Aya Tanatani; Yuichi Hashimoto; Kazuo Nagasawa. Development of bis-thiourea-type organocatalyst for asymmetric Baylis–Hillman reaction☆. Tetrahedron Letters. 2004, 45 (29): 5589–5592. ISSN 0040-4039. doi:10.1016/j.tetlet.2004.05.137. 
  14. ^ Sohtome, Yoshihiro; Yuichi Hashimoto; Kazuo Nagasawa. Guanidine-Thiourea Bifunctional Organocatalyst for the Asymmetric Henry (Nitroaldol) Reaction. Advanced Synthesis & Catalysis. 2005, 347 (11–13): 1643–1648. ISSN 1615-4150. doi:10.1002/adsc.200505148. 
  15. ^ Herrera, Raquel P.; Valentina Sgarzani; Luca Bernardi; Alfredo Ricci. Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst. Angewandte Chemie International Edition. 2005, 44 (40): 6576–6579. ISSN 1433-7851. PMID 16172992. doi:10.1002/anie.200500227. 
  16. ^ Wang, Jian; Hao Li; Xinhong Yu; Liansuo Zu; Wei Wang. Chiral Binaphthyl-Derived Amine-Thiourea Organocatalyst-Promoted Asymmetric Morita−Baylis−Hillman Reaction. Organic Letters. 2005, 7 (19): 4293–4296. ISSN 1523-7060. PMID 16146410. doi:10.1021/ol051822+. 
  17. ^ Vakulya, Benedek; Szilárd Varga; Antal Csámpai; Tibor Soós. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Organic Letters. 2005, 7 (10): 1967–1969. ISSN 1523-7060. PMID 15876031. doi:10.1021/ol050431s. 
  18. ^ McCooey, Séamus H.; Stephen J. Connon. Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition. 2005, 44 (39): 6367–6370. ISSN 1433-7851. PMID 16136619. doi:10.1002/anie.200501721. 
  19. ^ Cao, Chun-Li; Meng-Chun Ye; Xiu-Li Sun; Yong Tang. Pyrrolidine−Thiourea as a Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins. Organic Letters. 2006, 8 (14): 2901–2904. ISSN 1523-7060. PMID 16805512. doi:10.1021/ol060481c. 
  20. ^ Miyabe, Hideto; Sayo Tuchida; Masashige Yamauchi; Yoshiji Takemoto. Reaction of Nitroorganic Compounds Using Thiourea Catalysts Anchored to Polymer Support. Synthesis. 2006, 2006 (19): 3295–3300. ISSN 0039-7881. doi:10.1055/s-2006-950196. 
  21. ^ Wanka, Lukas; Chiara Cabrele; Maksims Vanejews; Peter R. Schreiner. γ-Aminoadamantanecarboxylic Acids Through Direct C–H Bond Amidations. European Journal of Organic Chemistry. 2007, 2007 (9): 1474–1490. ISSN 1434-193X. doi:10.1002/ejoc.200600975. 
  22. ^ Yamaoka, Yousuke; Hideto Miyabe; Yoshiji Takemoto. Catalytic Enantioselective Petasis-Type Reaction of Quinolines Catalyzed by a Newly Designed Thiourea Catalyst. Journal of the American Chemical Society. 2007, 129 (21): 6686–6687. ISSN 0002-7863. PMID 17488015. doi:10.1021/ja071470x. 
  23. ^ Liu, Kun; Han-Feng Cui; Jing Nie; Ke-Yan Dong; Xiao-Juan Li; Jun-An Ma. Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides. Organic Letters. 2007, 9 (5): 923–925. ISSN 1523-7060. PMID 17288432. doi:10.1021/ol0701666. 
  24. ^ Li, Xiao-Juan; Kun Liu; Hai Ma; Jing Nie; Jun-An Ma. Highly Enantioselective Michael Addition of Malonates to Nitroolefins Catalyzed by Chiral Bifunctional Tertiary Amine-Thioureas Based on Saccharides. Synlett. 2008, 2008 (20): 3242–3246. ISSN 0936-5214. doi:10.1055/s-0028-1087370.