硫脲有機催化
在有機催化領域, (硫)脲有機催化指利用脲或硫脲來加快有機反應速率或控制立體化學。與經典的催化方法不同,這種催化方法的利用的是底物和(硫)脲之間形成的氫鍵作用(可以認為發生「部分質子化」)。(硫)脲有機催化的應用包括立體選擇性應用與非立體選擇性應用[1]
歷史
Kelly、Etter、Jorgensen、Hine、Curran、Göbel和De Mendoza(參見下文引用的參考文獻)在非金屬小分子氫鍵催化領域作出了開創性貢獻。Peter R. Schreiner及其同事確定並引入了缺電子的硫脲衍生物作為氫鍵有機催化劑。Schreiner的選擇的硫脲為N,N'-二[3,5-二(三氟甲基)苯基]硫脲,這種催化劑結合了雙氫鍵介導的有機催化劑的所有結構特徵:
催化劑-底物相互作用
硫脲衍生物和羰基底物之間形成了兩個氫鍵。(硫)脲中共面的兩個氨基取代基是氫鍵的給體。[2] [3] [4] [5] 方醯胺利用雙氫鍵進行催化的性能通常優於硫脲。 [6]
硫脲有機催化劑的優點
(硫) 脲是符合綠色化學理念要求的催化劑,在應用中具有以下優勢:
底物
可接受氫鍵的底物包括羰基化合物、亞胺、硝基烯烴。 Diels-Alder反應也可以受(硫)脲催化。
催化劑
已開發出多種單官能和雙官能的手性雙氫鍵(硫)脲有機催化劑,以催各種可以用於合成的有機反應。
-
2003: Takemoto將雙官能手性硫脲衍生物用於不對稱Michael反應和Aza-Henry反應的催化 [12]
-
2004: Nagasawa利用手性雙硫脲有機催化劑催化不對稱貝利斯-希爾曼反應 [13]
-
2005: Nagasawa利用雙功能硫脲官能化的胍不對稱催化亨利反應[14]
-
2005: Ricci利用帶有額外羥基的手性硫脲衍生物,催化吲哚與硝基烯烴發生有對映選擇性的傅克烷基化[15]
-
2005: Wei Wang利用雙官能聯萘硫脲衍生物,不對稱催化Morita-Baylis-Hillman反應[16]
-
2006: Yong Tang利用手性雙官能吡咯烷硫脲催化環己酮對硝基烯烴的對映選擇性麥可加成[19]
-
2006: Takemoto使用PEG結合的手性硫脲,不對稱催化反式-β-硝基苯乙烯的(串聯)麥可反應的氮雜-亨利反應。[20]
-
2007: Kotke/Schreine使用與聚苯乙烯結合的硫脲衍生物,催化醇的四氫吡喃化[3]
-
2007: Wanka/Schreiner利用手性肽金剛烷硫脲催化Morita-Baylis-Hillman反應[21]
-
2007: Takemoto利用螯合的雙官能羥基硫脲催化喹啉的對映選擇性Petasis型反應[22]
拓展閱讀
- Christian M. Kleiner, Peter R. Schreiner. Hydrophobic amplification of noncovalent organocatalysis. Chem. Commun. 2006: 4315–4017.
- Z. Zhang and P. R. Schreiner. Thiourea-Catalyzed Transfer Hydrogenation of Aldimines. Synlett. 2007, 2007 (9): 1455–1457. doi:10.1055/s-2007-980349.
- Wanka, Lukas; Chiara Cabrele; Maksims Vanejews; Peter R. Schreiner. γ-Aminoadamantanecarboxylic Acids Through Direct C–H Bond Amidations. European Journal of Organic Chemistry. 2007, 2007 (9): 1474–1490. ISSN 1434-193X. doi:10.1002/ejoc.200600975.
參考文獻
- ^ Kotke, Mike; Schreiner, Peter R. (Thio)urea Organocatalysts. Petri M. Pihko (編). Hydrogen Bonding in Organic Synthesis. October 2009: 141 to 251 [2022-01-15]. ISBN 978-3-527-31895-7. (原始內容存檔於2014-01-15).
- ^ Alexander Wittkopp, Peter R. Schreiner, "Diels-Alder Reactions in Water and in Hydrogen-Bonding Environments", book chapter in "The Chemistry of Dienes and Polyenes" Zvi Rappoport (Ed.), Volume 2, John Wiley & Sons Inc.; Chichester, 2000, 1029-1088. ISBN 0-471-72054-2.
Alexander Wittkopp, "Organocatalysis of Diels-Alder Reactions by Neutral Hydrogen Bond Donors in Organic and Aqueous Solvents", dissertation written in German, Universität Göttingen, 2001. English abstract/download:
Peter R. Schreiner, review: "Metal-free organocatalysis through explicit hydrogen bonding interactions", Chem. Soc. Rev. 2003, 32, 289-296. abstract/download:
M. Kotke and P. R. Schreiner. Acid-free, organocatalytic acetalization. Tetrahedron. 2006, 62 (2–3): 434–439. doi:10.1016/j.tet.2005.09.079.M. P. Petri. Activation of Carbonyl Compounds by Double Hydrogen Bonding: An Emerging Tool in Asymmetric Catalysis. Angewandte Chemie International Edition. 2004, 43 (16): 2062–2064. PMID 15083451. doi:10.1002/anie.200301732.
Yoshiji Takemoto, review: "Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors", Org. Biomol. Chem. 2005, 3, 4299-4306. abstract/download: Mark S. Taylor, Eric N. Jacobsen. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angewandte Chemie International Edition. 2006, 45 (10): 1520–1543. PMID 16491487. doi:10.1002/anie.200503132.J. C. Stephen. Organocatalysis Mediated by (Thio)urea Derivatives. Chemistry: A European Journal. 2006, 12 (21): 5418–5427. PMID 16514689. doi:10.1002/chem.200501076. - ^ 3.0 3.1 3.2 3.3 3.4 Kotke, Mike; Peter Schreiner. Generally Applicable Organocatalytic Tetrahydropyranylation of Hydroxy Functionalities with Very Low Catalyst Loading. Synthesis. 2007, 2007 (5): 779–790. ISSN 0039-7881. doi:10.1055/s-2007-965917.
- ^ 4.0 4.1 Schreiner, Peter R.; Alexander Wittkopp. H-Bonding Additives Act Like Lewis Acid Catalysts. Organic Letters. 2002, 4 (2): 217–220. ISSN 1523-7060. PMID 11796054. doi:10.1021/ol017117s.
- ^ Kotke, Mike. Hydrogen-Bonding (Thio)urea Organocatalysts in Organic Synthesis : State of the art and Practical Methods for Acetalization, Tetrahydropyranylation, and Cooperative Epoxide Alcoholysis (Ph.D.). University Giessen/Germany. 2009 [2010-11-12]. (原始內容存檔於2012-08-29).
- ^ Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Bifunctional Amine-Squaramides: Powerful Hydrogen-Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions. Adv. Synth. Catal. 2015, 357 (2–3): 253–281. doi:10.1002/adsc.201401003.
- ^ Wittkopp, Alexander; Peter R. Schreiner. Metal-Free, Noncovalent Catalysis of Diels–Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water. Chemistry: A European Journal. 2003, 9 (2): 407–414. ISSN 0947-6539. PMID 12532289. doi:10.1002/chem.200390042.
- ^ Bordwell, Frederick G.; Ji, Guo Zhen. Effects of structural changes on acidities and homolytic bond dissociation energies of the hydrogen-nitrogen bonds in amidines, carboxamides, and thiocarboxamides. Journal of the American Chemical Society. 1991-10-01, 113 (22): 8398–8401. ISSN 0002-7863. doi:10.1021/ja00022a029.
- ^ A. Wittkopp and P. R. Schreiner. Metal-Free, Noncovalent Catalysis of Diels-Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water. Chemistry: A European Journal. 2003, 9 (2): 407–414. PMID 12532289. doi:10.1002/chem.200390042.
- ^ Sigman, Matthew S.; Eric N. Jacobsen. Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries. Journal of the American Chemical Society. 1998, 120 (19): 4901–4902. ISSN 0002-7863. doi:10.1021/ja980139y.
- ^ Sigman, Matthew S.; Petr Vachal; Eric N. Jacobsen. A General Catalyst for the Asymmetric Strecker Reaction. Angewandte Chemie International Edition. 2000, 39 (7): 1279–1281. ISSN 1433-7851. PMID 10767031. doi:10.1002/(SICI)1521-3773(20000403)39:7<1279::AID-ANIE1279>3.0.CO;2-U.
- ^ Okino, Tomotaka; Yasutaka Hoashi; Yoshiji Takemoto. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society. 2003, 125 (42): 12672–12673. ISSN 0002-7863. PMID 14558791. doi:10.1021/ja036972z.
- ^ Sohtome, Yoshihiro; Aya Tanatani; Yuichi Hashimoto; Kazuo Nagasawa. Development of bis-thiourea-type organocatalyst for asymmetric Baylis–Hillman reaction☆. Tetrahedron Letters. 2004, 45 (29): 5589–5592. ISSN 0040-4039. doi:10.1016/j.tetlet.2004.05.137.
- ^ Sohtome, Yoshihiro; Yuichi Hashimoto; Kazuo Nagasawa. Guanidine-Thiourea Bifunctional Organocatalyst for the Asymmetric Henry (Nitroaldol) Reaction. Advanced Synthesis & Catalysis. 2005, 347 (11–13): 1643–1648. ISSN 1615-4150. doi:10.1002/adsc.200505148.
- ^ Herrera, Raquel P.; Valentina Sgarzani; Luca Bernardi; Alfredo Ricci. Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst. Angewandte Chemie International Edition. 2005, 44 (40): 6576–6579. ISSN 1433-7851. PMID 16172992. doi:10.1002/anie.200500227.
- ^ Wang, Jian; Hao Li; Xinhong Yu; Liansuo Zu; Wei Wang. Chiral Binaphthyl-Derived Amine-Thiourea Organocatalyst-Promoted Asymmetric Morita−Baylis−Hillman Reaction. Organic Letters. 2005, 7 (19): 4293–4296. ISSN 1523-7060. PMID 16146410. doi:10.1021/ol051822+.
- ^ Vakulya, Benedek; Szilárd Varga; Antal Csámpai; Tibor Soós. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Organic Letters. 2005, 7 (10): 1967–1969. ISSN 1523-7060. PMID 15876031. doi:10.1021/ol050431s.
- ^ McCooey, Séamus H.; Stephen J. Connon. Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition. 2005, 44 (39): 6367–6370. ISSN 1433-7851. PMID 16136619. doi:10.1002/anie.200501721.
- ^ Cao, Chun-Li; Meng-Chun Ye; Xiu-Li Sun; Yong Tang. Pyrrolidine−Thiourea as a Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins. Organic Letters. 2006, 8 (14): 2901–2904. ISSN 1523-7060. PMID 16805512. doi:10.1021/ol060481c.
- ^ Miyabe, Hideto; Sayo Tuchida; Masashige Yamauchi; Yoshiji Takemoto. Reaction of Nitroorganic Compounds Using Thiourea Catalysts Anchored to Polymer Support. Synthesis. 2006, 2006 (19): 3295–3300. ISSN 0039-7881. doi:10.1055/s-2006-950196.
- ^ Wanka, Lukas; Chiara Cabrele; Maksims Vanejews; Peter R. Schreiner. γ-Aminoadamantanecarboxylic Acids Through Direct C–H Bond Amidations. European Journal of Organic Chemistry. 2007, 2007 (9): 1474–1490. ISSN 1434-193X. doi:10.1002/ejoc.200600975.
- ^ Yamaoka, Yousuke; Hideto Miyabe; Yoshiji Takemoto. Catalytic Enantioselective Petasis-Type Reaction of Quinolines Catalyzed by a Newly Designed Thiourea Catalyst. Journal of the American Chemical Society. 2007, 129 (21): 6686–6687. ISSN 0002-7863. PMID 17488015. doi:10.1021/ja071470x.
- ^ Liu, Kun; Han-Feng Cui; Jing Nie; Ke-Yan Dong; Xiao-Juan Li; Jun-An Ma. Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides. Organic Letters. 2007, 9 (5): 923–925. ISSN 1523-7060. PMID 17288432. doi:10.1021/ol0701666.
- ^ Li, Xiao-Juan; Kun Liu; Hai Ma; Jing Nie; Jun-An Ma. Highly Enantioselective Michael Addition of Malonates to Nitroolefins Catalyzed by Chiral Bifunctional Tertiary Amine-Thioureas Based on Saccharides. Synlett. 2008, 2008 (20): 3242–3246. ISSN 0936-5214. doi:10.1055/s-0028-1087370.