討論:歐幾里得
此條目已被學術論文引用。該論文為:
|
歐幾里得曾於2009年7月9日通過新條目推薦投票,登上維基百科首頁的「你知道嗎?」欄位。 |
歐幾里得屬於維基百科人物主題的基礎條目。請勇於更新頁面以及改進條目。 本條目頁依照頁面評級標準評為丙級。 本條目頁屬於下列維基專題範疇: |
|||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
本條目有內容譯自英語維基百科頁面「Euclid」(原作者列於其歷史記錄頁)。(部份翻譯) |
新條目推薦
- 《幾何原本》是誰的作品?(自薦,大幅修改)-Evan6445(留言) 2009年7月6日 (一) 10:16 (UTC)
- (+)支持--著名人物,但是作者的貢獻似乎主要集中在註釋和來源上,最好能再加些正文。藍色的頂夸克-對撞機|氣泡室- 2009年7月6日 (一) 11:05 (UTC)
- (:)回應-這條條目,我主要寫了介紹(部分),額外資料和著作幾段(都是從enwiki翻譯過來的)。enwiki裏有一段是講關於他的書籍(好像是element),所以我沒翻過來(因為最好還是看書籍的條目比較好)。另外,它還有一段是關於歐幾里得已失傳的書籍,但是這些書名的中文譯名比較難找,所以我也沒有翻過來。最後就變得註釋和來源的篇幅佔了條目的1/4。-Evan6445(留言) 2009年7月6日 (一) 11:20 (UTC)
- (+)支持—Fantasticfears(留言+ | 記錄) 2009年7月7日 (二) 00:45 (UTC)
- (+)支持及(!)意見:做了一些排版和文句的修改,又,發現Alexandria一地有多個中文譯名,暫時使用了模板:noteTA去區別中港台三地譯名,有關該地譯名的討論請參閱討論:希羅或本人與蘇州宇文宙武君於其討論頁的討論。歡迎大家提出意見,謝謝!--Onlim (留言) 2009年7月7日 (二) 02:26 (UTC)
- (+)支持--試後不適症 (留言) 2009年7月7日 (二) 02:36 (UTC)
- (+)支持-Hoising (留言) 2009年7月7日 (二) 03:22 (UTC)
- (+)支持—Iflwlou [ M { 2009年7月7日 (二) 07:20 (UTC)
- (+)支持—黑暗魔君 (留言) 2009年7月7日 (二) 11:08 (UTC)
- (+)支持—Chief.Wei 2009年7月7日 (二) 11:16 (UTC)
- (+)支持--Xnj920327 (留言) 2009年7月7日 (二) 13:18 (UTC)
- (+)支持內容足夠,參考質量俱佳。窗簾布(議會廳)(參與動員令報名) 2009年7月8日 (三) 02:44 (UTC)
- (+)支持—LUFC~~Marching on Together 2009年7月9日 (四) 03:22 (UTC)
- (+)支持--著名人物,但是作者的貢獻似乎主要集中在註釋和來源上,最好能再加些正文。藍色的頂夸克-對撞機|氣泡室- 2009年7月6日 (一) 11:05 (UTC)
歐幾里德=歐幾里得
「歐幾里得」很可能是利瑪竇口譯《幾何原本》,徐光啟筆記時採用的譯名,這個最早的譯名,已經成為現在的標準譯名。
古籍線索
《四庫全書總目提要·卷一百六·子部十六》
《幾何原本》六卷(兩江總督采進本)
西洋【歐幾里得】撰。利瑪竇譯而徐光啟所筆受也。歐幾里得未詳何時人。據利瑪竇序雲,中古聞士。其原書十三卷,五百餘題,利瑪竇之師丁氏為之集解,又續補二卷於後,共為十五卷。今止六卷者,徐光啟自序雲,譯受是書,此其最要者,遂刊之。其書每卷有界說,有公論,有設題。界說者,先取所用名目解說之。公論者,舉其不可疑之理。設題則據所欲言之理,次第設之,先其易者,次其難者,由淺而深,由簡而繁,推之至於無以復加而後巳。是為一卷。每題有法,有解,有論,有系,法言題用,解述題意,論則發明其所以然之理,系則又有旁通者焉。卷一論三角形,卷二論線,卷三論圓,卷四論圓內外形,卷五、卷六俱論比例。其於三角、方圓、邊、線、面積、體積比例變化相生之義,無不曲折盡顯,纖微畢露。光啟序稱其窮方圓平直之情,盡規矩準繩之用,非虛語也。又按此書為歐邏巴算學專書,且利瑪竇序雲,前作後述,不絕於世,至【歐幾里得】而為是,書蓋亦集諸家之成,故自始至終,毫無疵類加以光啟反覆推闡,其文句尤為明顯。以是弁冕西術,不為過矣。
明徐光啟撰。首卷演利瑪竇所譯,以明勾股測量之義。首造器,器即《周髀》所謂矩也。次論景,景有倒正即《周髀》所謂仰矩、覆矩、臥矩也。次設問十五題,以明測望高深廣遠之法,即《周髀》所謂知高、知遠、知深也。次卷取古法九章勾股測量與新法相較,證其異同,所以明古之測量法雖具,而義則隱也。然測量僅勾股之一端,故於三卷則專言勾股之義焉。序引《周髀》者,所以明立法之所自來,而西術之本於此者,亦隱然可見。其言李冶廣勾股法為測圓海鏡,巳不知作者之意。又謂欲說其義而未遑,則是未解立天元一法,而謬為是飾說也。古立天元一法,即西借根方法。是時西人之來亦有年矣,而於冶之書猶不得其解,可以斷借根方法必出於其後矣。三卷之次第大略如此,而其意則皆以明幾何原本之用也。蓋古法鮮有言其義者,即有之,皆隨題講解。歐邏巴之學,其先有【歐幾里得】者,按三角方圓,推明各數之理,作書十三卷,名曰《幾何原本》。(按:後利瑪竇之師丁氏續為二卷,共十五卷。)自是之後凡學算者,必先熟習其書。如釋某法之義,遇有與《幾何原本》相同者,第注曰見《幾何原本》某卷某節,不復更舉其言。惟《幾何原本》所不能及者,始解之,此西學之條約也。光啟既與利瑪竇譯得《幾何原本》前六卷,並欲用是書者依其條約,故作此以設例焉。其測量法義序云:法而系之義也,自歲丁未始也,曷待乎?於時《幾何原本》之六卷始卒業矣,至是而傳其義也。可以知其著書之意矣。
《幾何論約》七卷(內府藏本)
國朝杜知耕撰。知耕字臨甫,號伯瞿,柘城人。是書取利瑪竇與徐光啟所譯《幾何原本》復加刪削,故名《論約》。光啟於《幾何原本》之首,冠雜議數條,有雲此書有四不必;不必疑,不必揣,不必試,不必改。有四不可得;欲脫之不可得,欲駁之不可得,欲減之不可得,欲前後更置之不可得。知耕乃刊削其文,似乎蹈光啟之所戒。然讀古人書往往各有所會心,當其獨契,不必喻諸人人,並不必印諸著書之人。《幾何原本》十五卷,光啟取其六卷。【歐幾里得】以絕世之藝,傳其國遞授之秘法,其果有九卷之冗贅,待光啟去取乎?各取其所欲取而已。知耕之取所欲取,不足異也。梅文鼎算數造微,而所著《幾何摘要》亦有所去取於其間,且稱知耕是書足以相證。則是書之刪繁舉要,必非漫然矣。
規範性資料
1. 全國科學技術名詞審定委員會審定的《英漢數學名詞》
可以印證譯名標準的較具權威性的圖書及其他資料
1. 《辭海》
2. 《中國大百科全書》
4. 科學出版社《實用數學手冊》之數學家譯名表
5. 網上可查到的一些大陸和台灣的譯名表(如在辭書附錄)
請補充...
支持
標準應該是歐幾里得,我也是用歐幾里得。--刻意 2008年12月28日 (日) 11:05 (UTC)