神經增強

神經增強(英語:Neuroenhancement)或認知增強(英語:cognitive enhancement),是指對已知無任何精神疾病的健康人身上,通過應用神經生物學研究成果,有針對性地增強或擴展其認知與情感能力,算是個概括性的術語。[1][2][3][4][5][6][7]通過藥物或非藥物方法來改善神經功能,或是超出了維持或恢復健康所必需的範圍,而旨在改善人類形態或機能的干預措施,以及伴隨這些目標和做法的神經倫理學英語Neuroethics討論。[8][9]

儘管廣義上的認知增強劑,還包括使用被認為不健康或有嚴重副作用的精神活性物質,但神經增強劑仍能幾乎不會產生副作用的可靠地為健康人帶來超出正常功能的大量認知、社交、心理、情緒或運動方面的益處。[9][7]促智藥包括莫達非尼[13]假馬齒莧[19]磷脂酰絲氨酸[6]咖啡因[27]等已被證實有健腦功效的藥物,與用於治療神經系統疾病的其他藥物。

通過非藥物措施來改善認知能力的方法,包括行為方法[28](活動、技巧和改變)、非侵入性腦刺激技術(已被用於改善各種認知和情感功能)和人機介面(在擴展運動和認知能力方面具有很大潛力)。[29]

方法

藥物方法

 
PubMed上搜尋title或abstract中包含 「nootropic」或「smart drug」的研究和摘要的搜尋結果指標;[30]許多有關促智藥的研究未被收錄到PubMed,而有些被收錄的研究也並非主要針對這類主題

有許多包括智能藥物與膳食補充劑在內的促智藥,與神經或認知增強有關,但許多營養劑在健康人身上起效小,副作用大。最常見、最流行[31][32]或最起效最顯著的神經增強劑包括莫達菲尼哌醋甲酯利他能),此類藥或可能產生顯著的促智效果(或至少與咖啡因效果相同或相似)。[33][12][9][9]

一般的興奮劑[20][22]和各種抗失智藥英語Dementia#Medications[20][22][34][35]抗焦慮藥[34]神入感激發劑英語Empathogen–entactogen[36]、各種微量用劑英語microdosing(主要用微劑量迷幻劑英語Psychedelic microdosing[36][37][38][39]、及抗抑鬱藥[20][22],儘管或不被認為是屬促智藥之範圍,但或從屬於神經增強的範疇。

儘管神經增強劑通常是在臨床或技術領域取得成功後才被考慮投入使用,但其也常被用於幫助缺乏如社交技能與共情能力在內的,正常認知、運動和情感能力的個體。此種情況下,神經增強藥物試圖增加催產素,降低皮質醇水平,以幫助個體提高溝通與社交能力。[5][40]

神經增強不僅涉及強化短期和長期的智力(通常由各種類型的評估確定)、學習能力(如記憶強化)、專注沉浸能力[9][41][42][43][40],及通過各類心理測量所體現的指標,而且還涉及:

增強劑有生化、物理和行為層面上不同的增強策略。[64]乙酰半胱氨酸,一種低副作用的認知增強劑,與改善不健康的物質使用[51][52][65]或穩定情緒都有關係[66][67][68][69][70]

莫達非尼

 
莫達非尼的3D結構
 
PubMed使用title或abstract篩選檢索「Modafinil」的檢索結果指標[71]

莫達非尼覺醒促進劑英語Wakefulness-promoting agent之一,能減輕疲勞、提高警惕、減少白天過度嗜睡英語Excessive daytime sleepiness徵狀與改善情緒。[4][5][10]莫達非尼目前獲准用於治療嗜睡症睡眠呼吸暫停輪班工作睡眠紊亂等疾病,[2][5]目前也正被美國空軍採用,以用於減輕機組人員執行長時間任務所帶來的疲勞。莫達非尼在普通大眾中也越來越受歡迎,在《自然》雜誌進行的一次在線調查中,1400名讀者中就有8.8%承認出於非醫療原因使用莫達非尼。他們使用莫達非尼的理由是為了提高注意力和對特定任務的專注度,或者是為了抵禦睡眠不足和倒時差[2]若將莫達非尼銷售量與患者人數進行比較發現,兩者的比例失調,表明對莫達非尼的濫用現象嚴重。[2]

莫達非尼被報告出,可以改善非有失眠徵狀的健康個體的執行能力,或改善注意力、學習能力與記憶力[1]而莫達非尼對睡眠不足者的作用更為顯著:單一劑量就已能提高清醒度、執行能力與記憶力。[10]在持續睡眠不足的情況下,重複服用莫達非尼有助於保持比安慰劑更高的清醒水平,但對改善注意力和執行能力沒有幫助。[2][10]由於此類試驗大多針對軍人進行,因而還需進一步研究莫達非尼對普通人群的影響。莫達非尼或會損害人的自我監控能力,研究發現的常見趨勢之一是:參與者對自己在認知測試中的表現評價高於實際水平,這表明存在「自負」效應。[2]

莫達非尼在普通人群中也越來越受歡迎,[8]除了希望藉此改善自身神經系統性能,給藥廠帶來的經濟利益也是原因之一。每年,莫達非尼的市場份額就超過7億美元,表明除醫用外的份額很高。[4]莫達非尼也是目前市場上,比較容易買到的神經增強藥物之一。莫達非尼可以從許多網站(大多產自亞洲國家)或暗網市場上買到。[4][72][73]莫達非尼首次引起公眾注意是在2003年田徑世錦賽上,世界冠軍長跑運動員凱莉·懷特因非法服用莫達非尼,被檢測出陽性反應,因此也失去了兩枚金牌。[4]

派醋甲酯

 
派醋甲酯的3D結構

哌醋甲酯(MPH)又名利他能,是興奮劑,用於治療注意力缺陷多動障礙(ADHD)。但眾所周知,哌醋甲酯在普通人群——尤其是在大學生中被大量濫用。[2][4]在《自然》雜誌開展的一次在線調查中,1400名讀者中有12.4%承認出於非醫療原因使用哌醋甲酯,使用MPH的理由是為了提高注意力、改善睡眠不足和倒時差[2]

將MPH銷售量與患者人數進行比較後發現,兩者的比例失調,表明濫用現象嚴重。[2]MPH被認為對鞏固記憶有積極作用,儘管研究未能最終證實此說法。[2][10]流行觀點認為MPH能增強注意力,但這一觀點同樣未能得到證實。[2][10]MPH的研究報告指出,MPH能提高解題能力。然而,當重複研究以期復現結果時,安慰劑組的得分更高,這表明MPH甚至會損害成績。[4]這些不確定的、普遍負面的記憶力改善研究結果,不足以解釋出於非醫療用途使用MPH的原因。除了用於改善神經機能外,用藥者還可能有其他動機,如主觀和娛樂效果等,而這推動了其在無處方的情況下用藥。[2]

美金剛胺

美金剛胺,一種NMDA受體拮抗劑,用於治療中至重度阿茲海默症患者,但也被用作神經增強藥物。[3]由於此類研究,大多是對美金剛的單劑量測試,而因此類藥物,只有在持續攝入後才會顯示出某些無論積極或消極的效果。因而,在此之前,單劑量美金剛研究不足以揭示該藥物的實際潛力。[3]

多奈哌齊

多奈哌齊,一種乙酰膽鹼酯酶抑制劑(AChEI),用於治療輕至中度阿茲海默症患者。雖然,許多乙酰膽鹼酯酶抑制劑都可能是潛在的神經增強物質,但因多奈哌齊被廣泛用於治療阿茲海默症,因而在普通人群中是屬最常用的乙酰膽鹼酯酶抑制劑。[3]

關於多奈哌齊的大多數研究都無法最終驗證該藥物具有神經增強的能力,[3]儘管這些研究中,服用多奈哌齊的參與者組得分高於服用安慰劑的參與者組。多奈哌齊能幫助患者保持訓練任務、言語記憶和外顯記憶。[3]在睡眠剝奪研究中,雖然多奈哌齊對休息良好的個體沒有影響,但對被睡眠剝奪24小時的個體有積極影響,記憶力和注意力都得到了提高;若非如此,在如此睡眠不足的境地下,其記憶力和注意力就會出現缺陷。[3]不過,值得注意的是,此種效果僅出現在因睡眠不足,而成績明顯下降的人身上。[3]

研究和潛力藥物

 
有關神經增強的研究數量指標(PubMed檢索結果,通過titles與abstracts檢索)[74]

有相關研究探索了現有認知增強劑的衍生物,這些衍生物具有或可能具有更高的生物利用度,如乙酰半胱氨酸的衍生物N-乙酰-L-胱氨酸英語Acetylcysteinamide,和其他生物利用度增強策略。[75][76]另一種增強藥效、效力或選擇性(selectivity)的方法是改進給藥方式,[77][78]開闢更多給藥途徑,如通過奈米乳液英語nanoemulsion鼻內給藥英語Drug delivery to the brain("nose-to-brain" drug deliver),[79]或假設通過腦部植入給藥。[80]

半衰期或也是研發課題之一。如,儘管莫達非尼能顯著提高人的警覺性,但其半衰期長達約13小時,[81]會延遲或影響入睡時間與睡眠[82][21]而目前市面上,也還沒有短效的莫達非尼。根據2009年的兩項研究,阿莫達非尼的消除速度,比外消旋莫達非尼的S-異構體慢約三倍。[83][81]

研究還可能圍繞以下問題進行英語Research question

腦內生物工程

短期內,無法用於人類的高級認知增強技術,可以建立在設計受體的研究基礎上,並通過蛋白質活化或抑制神經元,如使用藥物遺傳學技術英語Receptor activated solely by a synthetic ligand[105] 經過基因改造神經元可將外部元件與神經連接。[106]2020年,研究人員報告稱,通過生物工程秀麗隱桿線蟲進行了改造,使其能夠在腦細胞中合成、製造和組裝生物電子材料英語Bioelectronics,實現了對特定神經元群膜特性的調控,以及操縱活體動物的行為。[107][108][109]

如果有機神經形態設備達到一定程度,並具有生物相容性,就有可能實現新型大腦植入物。[110]還有有關潛在的可植入式物理人工神經元的研究。[111][112]基因工程幹細胞培育的神經組織的生物移植也有可能實現,[113]另種方法是通過濕件計算機英語Wetware computer達成。

膳食成分和補充劑

健腦食品所含各種化合物,以草藥或分離物形式攝入,如:桂皮[114]可可粉[115][44][116][117][91] 花色素苷(如於 山桑子西洋接骨木之中)、[118]硝酸鹽(如於紅菜頭之中)、[91]蜂蜜[119]多酚(存在於許多水果和蔬菜之中)、[91][120][121][122]兒茶素[123][124] L-多巴[42]苯丙氨酸[125][126]酪氨酸,[127][87]苯乙胺[128]類胡蘿蔔素番茄紅素(於番茄醬中)[128]茶氨酸[129][89][90]芹菜素(和洋甘菊)、[130][131][132][117][126]草本茶(尤為香蜂花迷迭香辣薄荷含咖啡因的飲料英語Caffeinated drink)、[133][134][135][136][26][126]紅景天[77][85][126][137][138]肌酸[139][140][141]Ω-3脂肪酸(如,藻類提取物英語Algaculture[146]以及糾正普遍存有的微量營養素缺乏症[147][148][149][150][126][151]研究其對健康年輕人認知能力,可能產生的微小,但顯著的影響或疊加影響。

膳食中的葡萄糖(及其糖原形態)是大腦的主要能量來源,儘管直接攝入葡萄糖會影響健康,但一些研究人員認為葡萄糖是種「生化增強劑」,需要持續補充,但以單糖補充,會使血糖飆升,且其提供的葡萄糖供應,也不會持續太久。與快速吸收或高GI食物相比,吸收緩慢的含碳水化合物食物或低GI食物釋放葡萄糖的速度較慢。[152][91][64][126]儘管腦葡萄糖代謝與神經退行性疾病有關,但有關腦葡萄糖代謝與認知能力之間聯繫的研究卻很少。[153]乳酸(尤其是在特定類型的運動中釋放)也可能與認知能力的提高有關。[154][155][156]

藥物

正在進行早期研究的、具有顯著潛在可行性的藥劑——作為最終藥劑或類似藥劑的原型——有可能在特定情況下(如學習階段)對健康青年人特殊層面產生影響。但至少在大多情況下、此類藥劑、對人體的影響和安全性基本未知、因此未被廣泛應用或沒被應用、如: 食慾素-A[157]FGLPTEN-PDZ磷酸肌醇3-激酶PTD4-PI3KAc、[158] 益智二肽英語dihexa[159][160][161]環絲氨酸[162][163][164][40][165]多巴胺再攝取抑制劑CE-123英語CE-123和CE-158、[166]安帕金英語ampakine,如IDRA-21CX717英語CX717[167][168][40][126][169]雷帕替奈英語rapastinel[170][171][172]ISRIB[173][174]citicoline英語citicoline[175]選擇性英語selective receptor modulator受體調節劑、如MRK-016英語MRK-016(作用於GABAA亞型受體)、[176]類似莫達非尼的CRL-40,940英語CRL-40,940modafiendz[100]受莫達菲尼啟發或混合型SNDRIJZ-IV-10英語JZ-IV-10和JZAD-IV-22、[177][178][179]TAK-925英語Danavorexton食慾素受體拮抗劑英語Orexin receptor與莫達非尼有類似的覺醒作用)、[180][181]喚醒性或促認知性嗜睡症候選藥物,如samelisant英語samelisant[182][183]紫檀芪[184][185]伊布莫侖英語ibutamoren[186][187]H3受體拮抗劑英語H3 receptor antagonist替洛利生[188][182][189]

一些藥物、如廣泛使用的、與社交能力相關的 GABA受體促效劑英語GABA receptor agonist苯妥英鈉、至少在某些劑量下——儘管不一定——會對某些人產生持久的重大副作用和成癮可能性。[190][191][47][192]其他值得注意的再利用英語drug repurposing化學品已經被廣泛用於其他目的、並具有潛在的神經增強功能、但在大多數情況下、沒有或很少有針對青年人的研究。側面研究顯示有有限效應和或大小未知的藥劑包括: 大麻二酚[193][194]神經肽腦活素英語cerebrolysin[22][195]尼麥角林英語nicergoline[196][85]石杉鹼甲英語huperzine-A[197]二甲基乙醇胺甲氯芬酯英語meclofenoxate[85][197][34]vinpocetine英語vinpocetine[85][197] 十六酰胺乙醇(PEA)、[198]砒硫醇英語pyritinol[199][85]

非藥物方法

神經刺激

神經刺激英語Neurostimulation方法目前正被研究與開發,研究結果表明,刺激程式的細節至關重要,否則會損害而非增強認知能力。人們對這種方法,能否在認知領域產生有意義的結果提出了質疑。刺激方法包括電刺激、磁刺激、激光光刺激、幾種形式的聲刺激以及神經反饋英語neurofeedback等物理刺激方法。[64][105]也有一種想法是,將可神經刺激的穿戴物集成至頭盔之中。[157][105]

跨顱直流電刺激

如果說,神經增強藥,是提高認知能力的方法之一,那麼對運動皮層的跨顱直流電刺激(tDCS),則被視作另種方法。[200]tDCS最初是用於幫助腦損傷(如中風)患者。但在過去幾年,人們對其在健康人身上的應用也產生了濃厚的興趣。最近研究已表明,tDCS能改善神經可塑性,促進年輕人運動學習,因而,也有可能將這種方法應用到老年人群中。[200]

在一項研究中,用tDCS刺激大腦的高級認知功能區,如語言功能區,結果改善了受試者的單詞檢索能力。tDCS通過增強特定受刺激網絡的連通性發揮作用,在對任務執行至關重要的高度特定腦區提供神經效率。[201]在此期間,fMRI圖還顯示語義檢索過程活動減少,表明大腦任務關鍵區域的處理效率更高。[201]限定任務相關區域活動的減少,被認為有助於鞏固運動學習與提高記憶能力。tDCS最新研究正試圖定位刺激,以影響所需的高度特定的任務相關神經元子集。[201]2022 年,科學家們證實,跨顱直流電刺激可根據頻率的不同,在一個月內改善65-88歲人群的短或長期記憶。[202]

腦深層刺激術
 
插圖顯示了放置在大腦深部的電極

腦深層刺激術(DBS)是另一種神經強化療法。與tDCS不同之處在於,DBS需要植入醫療設備,而且只限於柏金遜症肌張力障礙等少數嚴重疾病。[203]一項研究顯示,在3個月的治療過程中,DBS使肌張力障礙患者的運動能力提高39%,殘疾程度降低38%,生活質量提高30%。[203]患者的肌張力障礙徵狀減輕50%。[203]DBS手術後的數小時至數天內,病情明顯改善。目前,DBS的療效遠遠超過大劑量三苯氧胺(一種用於治療肌張力障礙的強效藥物)。

腦波夾帶

腦波夾帶英語Brainwave entrainment,也稱腦波同步或神經夾帶,是指觀察到腦波(大腦中的大規模電振盪)會自然地與周期性外部刺激的節奏同步,如閃爍的燈光[204]、語言[205]、音樂[206]或觸覺刺激。由於不同的意識狀態,可能與不同的主導腦電波頻率有關,[207]因此假設腦電波夾帶可以誘導出一種理想的狀態。如,研究人員發現,對慢波睡眠中的delta波,進行聲波夾帶具有改善健康受試者記憶力的功能效果。[208]一項研究表明,採用「視覺閃爍範式」,以個體自身的大腦節奏(即alpha波)對其進行誘導,可大大加快感知視覺學習速度,並在誘導後第二天依舊保持。特別是,在檢測背景雜波中的目標,或識別噪聲中的徑向玻璃圖案與同心玻璃圖案的辨別任務中,與不進行alpha波誘導一組相比,誘導組大大加快了學習速度(該組「進步速度至少是對照組的三倍」)。[209]

環境因素

教育與時間分配

發展教育也可是神經強化一部分。神經科學和軟件(如人工智能和自適應在線學習環境)方面的成果或與這一發展相關,[210][211][212][213]終身學習可被視為認知能力提升的方式之一。[41]

 
15到64歲人群間時間分配圖示[214]

如何分配時間,可能會對認知產生重大影響,反之亦然。[23][215][28]而這可通過各種非藥物方式調節,如決策、優先順序、例行活動、反思實踐、推理相關技術、遊戲化[41]、激勵措施等。一篇綜述指出,採用「動機訪談、使用獎勵或激勵措施」等增強動機的措施,可使干預措施在改善健康行為方面,取得更大成功。[216]典型的活動包括睡眠、有償勞動、學校、社交媒體、電視、志願服務、鍛煉、社交活動和業餘愛好等。

時間分配

有有關時間分配的研究,也有關於各類媒體使用對認知影響的研究。屏幕時間和遊戲行為對認知的影響,可能在很大程度上取決於活動、情境、替代活動和內容。[215][217]而使用認知增強劑藥物的動機就包括「優化時間」和「增加清醒時間」。[21]

教育與認知

在課堂引入和整合多媒體等工具設備,可以提高認知能力和靈活性,降低認知負荷,也可培養數位素養[218][213]批判性思維、技術支持的探究學習、科學推理能力和解決問題的技能,可能與認知領域有關,或為「元認知技能」。[219][220][213][221][222][223]教育改進或可視為提高認知能力,「教育者」常犯一種謬誤,即當他們採用「應試教育」和優先考慮「記憶,而非批判性思維與解決問題等可推廣的技能」時,他們會假定如果「個別獨特的認知過程可以得到提高[......][這]就一定會提高整體認知能力」此種謬誤。[224]

基因強化

基因工程是未來潛在的認知增強生化策略之一,目前僅在動物模型中進行了初步但成功的測試,還不是研究人員可選取的增強方法。[64][28][225]

候選靶基因

 
特質、智商和語言能力英語Genetic correlation

喬治·丘奇根據科學研究匯編了一份基因改造清單,進行改造會帶來有利成效,如減少睡眠需求、與認知相關的變化(如預防阿茲海默症)、抗病能力、更高的瘦肌肉質量與更強的學習能力,及相關的研究與潛在的負面影響。[226][227]一項神經遺傳學英語Neurogenetics全基因組關聯分析統合分析調查有關語言技能的遺傳相關性,報告了迄今為止人類獨有的語言相關能力的遺傳因素,特別是五個測試特徵技能水平差異的因素,也還使用了神經解剖學神經影像學的數據。[228]但,相關性不等同因果性,因果性既不一定獨立於社會因素,也不一定完全有用。

範圍

神經強化的主要着重點,如優化兒童發育因素及延緩、逆轉或減輕大腦老化。[229]而增強人類記憶與學習能力的嘗試,在科學領域也有着悠久歷史。[230]

 
截至2021年的過去與預測的世界人口年齡[231]

支持提升認知能力的人認為,認知能力提升對勞動力,尤為老年勞動力有巨大的潛在益處。[200][77]因為上世紀醫療技術的大幅提高,人類平均預期壽命隨之大幅增加。發達國家的人口統計數據顯示,老年勞動力迅速增長。但,年齡增長通常打擊學習新技能之能力,而現今,行業整合比以往任何時候,都更需要員工能夠獲取和保留新技能的能力。[200]隨着老齡人口增加,與年齡有關的失調和疾病,所造成的經濟、社會和健康負擔也隨之增加。[77]最近,「由於全球老齡比例不斷增加,而且預計與年齡相關的大腦認知功能衰退也會加劇」,增強認知功能的問題也愈發受到人們關注。[230]

一篇評論指出,「即使是身體正常的年輕人,因睡眠不足、時差或其他壓力因素,也並不總是正常發揮身體機能,有些人,可能需要認知增強劑才能在某些情況下發揮最佳水平」。[99]因此,神經增強涉及的是提高各認知領域的能力,使其在更多和更具體的時間內接近並提高最佳水平,及改善神經心理之弱點或並非疾病的輕度缺陷。

副作用

常見的神經增強藥物,通常對健康人有着很好的耐受。[2][3]而此類藥物已成為治療各類精神疾病患者的主流藥物。由於有關神經增強劑及其功能的大部分資訊都源於研究實驗,因此,確定不良反應的最佳方法,是脫落率指標與用藥者的主觀評價。多奈哌齊美金剛胺派醋甲酯莫達非尼的脫落率極低或根本沒有。[2][3]在藥物試驗中,參與者報告了服用多奈哌齊、美金剛、派醋甲酯或莫達非尼後,出現有以下不良反應:胃腸道不適(噁心)、頭痛頭暈、做噩夢焦慮嗜睡、緊張、不安、睡眠障礙和失眠,但副作用通常會在治療過程中消去。[3]雖然沒有關於腦深層刺激手術副作用的報告,但有18%的患者報告了與設備相關的併發症,如導線脫落或斷裂導致的感染。[203]各種因素,如劑量、時間和行為之因素,都可能形成,或決定副作用出現。但,認知增強劑被廣泛使用,但其對健康的長或短期影響,幾乎完全未知,或已知對健康不利。

倫理、社會和法律問題

對健康的不利影響與依賴性

 
title或abstract中含有促智藥、智能藥物或認知增強劑的臨床試驗的PubMed搜尋結果指標[232]

家長與醫療保健師對使用各類神經增強劑的人之安全與健康狀況感到擔憂。[233]2011年,在傑恩·盧克(Jayne Lucke)發表的一篇文章中,將神經增強的概念與西地那非作比較,指出「西地那非的娛樂性使用者對自己勃起能力的信心低於非使用者,儘管他們的勃起功能明顯更好。他們對這些藥物產生了心理依賴」。作者認為,神經增強劑使用者也會出現類似的問題。[233]此外,會有高估預期干預措施,或認為其超過實際效果之情況,而過度自信。[2][24]

若越多人參與進促智隊伍一員,那或會導致人們「最終會感到,自己受到了微妙的脅迫,不得不參與進來,以便在學校或職場中保持競爭力」,又或是在軍隊中,或是受到同伴的各種壓力而參與其中。[157][234][46]Dubljević指出,「確保納稅人充分知情、跟蹤任何不利影響,並由籌集資金(如通過稅收或收費)以解決相關社會問題至關重要」,表明政府也可以在應對神經增強挑戰方面發揮更積極的作用。[235]醫療系統中,若沒採取調整生產措施,如提高產量、降低生產成本,那樣調整,神經增強可能會誘發「處方藥轉移」現象,分散治療用處方藥之比例。[34]一篇評論假設,近期針對健康個體的隨機對照試驗樣本量有限,部分原因或是研究受到媒體與生物倫理文獻影響,這些文獻圍繞着在健康受試者中使用藥物增強認知能力的倫理等主題展開論述。[7]

安全與質量控制

兩張通常通過互聯網從國外購買的認知增強劑藥品的照片:莫達非尼腦復康;一張網絡藥房配藥機的照片

對於包括膳食補充劑與治療藥品在內的認知增強劑,似乎缺乏各種要求、質量標準、驗證和鑑定流程、抽樣調查與實驗室檢測等措施,或為治理失敗英語Governance failure之果。[236][237][238][239][240][241]意味着,儘管用藥者可能是完全了解當前關於化學品利弊與個人用藥因素的有關知識,藥品仍可能存有,與標籤不同或質量較差的風險,[242]這在某些情況下,會造成危險。[243]一項研究,提出了一份建議:「創立知識庫——作為學校和成人教育中,有關營養與健康教育的一部分,使人們能夠抵制與食品補充劑有關的營銷與廣告,權衡利弊,知悉潛在健康風險」。[244]

認知多樣性和不平等

神經強化常被與體育運動中的興奮劑問題類比,因此有時也被稱其為腦興奮劑。[233][23][190][25][57]人們普遍關注問題之一是,服用提高成績藥物的人,比不服用的人,享有不公平的優勢。但許多運動員認為,要想戰勝使用能提高成績的藥物的運動員,唯一方法是,自己也用;看待服用神經增強藥物的人時,普通人想法類似。[233]在一項針對18至34歲青少年的調查研究中,50%的青少年對使用興奮劑的概念幾乎沒有異議。[233]尤其是學生群體,往往認為認知神經增強劑,可被接受。[233]

通常講,以神經增強為目的的此類藥物,道德可接受性(包括公平觀念)是決定使用或不使用這類藥物重要因素之一。研究表明,對此類藥物的道德反對,大幅降低了使用此類藥物的意願。[245][246][247]許多人認為,監管神經增強劑的唯一出路是允許所有人使用,從而最大限度地減少以此帶來的不公平優勢。另一方面,禁止使用這些藥物可能會對社會造成有害影響,[8]因為這不僅會形成黑市,擴大非法使用造成的問題,還會增加社會執法成本。[233]因此,需要對神經增強藥物利弊進一步評估,使決策者更容易對此類藥物的監管做出決定。[10]

總的來說,認知多樣性——或某種「最佳多樣性範圍」——或許有價值。科技進步帶來的新能力,自然會引發相關的倫理問題。[248]還有人推測,認知增強技術(CET),也可能會增加認知多樣性,如,不同的人會選擇增強其認知的不同方面。[249]此外,認知能力的提高,也可能會減少不平等現象,[250]如通過「公平競爭」以及縮小「基因抽籤」帶來的不平等。[7]

分配正義

另一問題是分配正義,涉及「誰能獲得,新的認知增強技術」與「誰能體驗到其益處」之問。[234][99][113][34]影響認知增強劑成本,主要因素之一,便是其專利性,不利於降低成本推廣。[64]網上藥店可以大幅降低成本,提高可負擔性,使消費者得以支付得起某些藥品。[240][251][252]天然製劑(少量存於食物)可以「為社會經濟背景較差,或居住在較貧窮國家的患者提供更多選擇」。[77]艾倫·布坎南英語Allen Buchanan在其著作中建議,「我們應該抓住這一新興藥物技術提供的機遇,投入資源,確保這些藥物得到適當的開發與測試、確保獲得這些藥物的機會平等且開放,以避免不公正和黑市的發展」。[253]

認知自由與自主

Sententia將認知自由之實際應用表示為兩個原則:

  • 只要行為不危及他人,就不應違背個人意願,強迫他們使用與大腦直接交互的技術,也不應強迫他們服用某些精神藥物。
  • 只要個人隨後不從事傷害他人的行為,就不應禁止他們使用新的增強思維的藥物和技術,也不應將其定罪。[254]

第一原則旨在保護個人免受國家、公司或其他個人干擾認知過程,第二原則旨在確保個人擁有改變與增強自身意識之自由。[255]享有認知自由之個體,可以自由地,以任何方式改變自己的心理過程,無論通過冥想、瑜伽或祈禱等間接方式,或,通過精神藥物與神經技術進行直接的認知干預來達到。由於精神藥物是強有力改變認知功能方法之一,許多主張認知自由的人,同時也倡導藥物相關立法改革;他們聲稱,「對毒品的戰爭」實際上是「對精神狀態的戰爭」。[256]認知自由與倫理中心(Center for Cognitive Liberty and Ethics,CCLE)及其他倡導認知自由的組織,一直在遊說重新審查與改革違禁藥物法;CCLE的主要指導原則之一是:「政府不應在刑事上禁止認知增強或體驗任何精神狀態」。[257]還有人以認知自由為由,呼籲改革對使用百憂解利他能阿德拉等增強認知能力的處方藥之限制。[258]

認知自由對超人類主義運動支持者而言,也同樣重要,超人類主義運動關鍵信條之一,便是增強人類的精神功能。Wrye Sententia強調了認知自由,在確保追求人類精神增強的自由,及選擇反對增強的自由方面的有着相當重要性。[259]Sentia認為,承認「指導、修改或強化個人思維過程的權利(以及不如此做的權利)」對於自由應用新興神經技術,以增強人類認知能力至關重要;而且需要超越當前的思想自由概念。[260]Sentia稱,「認知自由的優勢在於,它既能保護那些確實想改變大腦的人,也能保護那些不想改變大腦的人」。[259]

人權

許多人權倡議者業已提出許多相關神經增強的人權倡議。[261][262] 2023年,在妮塔·A·法拉尼英語Nita A. Farahany出版一本書中,提出了一項新的有關認知自由的人權倡議,作為「對現有的私隱權、思想自由權和自決權等其他人權的更新」,部分原因是一些神經增強技術也可能被用於「非自願神經監控」等方式(包括商業目的),而容易受到黑客攻擊或被用於操縱。[263][264][265]還有人提出「認知自由權、精神私隱權、精神完整權和心理連續性權」等權利。[261]2021年,智利成為第一個批准神經法的國家,規定了有關個人身份、自由意志和精神私隱的權利。[266]

流行文化

神經增強藥在一些小說和電影中扮演着重要角色,如2011年的《藥命效應》,該片在一定程度上,以富有想像力的方式,探究與探討了使用神經增強藥的機遇與威脅。[267]

觀點

公眾觀點

公眾對神經增強問題的看法不一。[233][268]通常說,25歲以下的年輕人,認為神經增強劑可被接受,或說決定權於個人手中。醫療保健官員和家長則擔憂,如安全因素、缺乏有關這些藥物完整資訊,及可能出現的不可逆之不良影響。[233]事實證明,這些擔憂,會降低使用此類藥物的意願。[269][270][246]

2016年,德國對6454名受訪者進行的一項研究發現,認知增強藥物的終身使用率相當低(2.96%),而每十名受訪者中,就有一人願意服用此類藥物(10.45%)。[271]據研究估計,美國有7-9%的大學生服用神經增強藥物。有些研究估計這一數字高達12%,甚至20%。[268]一項對5000多名德國大學生進行隨機抽樣大規模調查發現,30天內使用此類藥物的比例相對較低,分別為1.2%、2.3%、3.2%和4.6%。[269]在過去6個月內,使用過此類藥物的學生中,39.4%表示在此期間使用過一次,24.2%使用過兩次,12.1%使用過三次,24.2%使用過三次以上。研究表明,神經增強藥物的消費者更願意在未來使用這些藥物,例如,由於藥物帶來的積極體驗或成癮傾向。[247][272]學生們認為使用這些藥物,主要是為了提高注意力、提高警覺性或「嗨」起來。[233][268]

神經增強藥物使用者對神經增強藥物積極潛力的評價高於非使用者,而對這些藥物不良反應的評價低於非使用者,這表明他們對這些藥物的效果更有信心。在一項針對1324名德國學生的調查中,32%不服用神經增強藥物的受訪者,認為這些藥物具有積極促認知效果,12%參與者認為這些藥物具有放鬆效果。[268]相比之下,54%的服用神經增強藥物的參與者認為這些藥物具有積極的認知效果,25%的人認為這些藥物具有放鬆效果。

 
對醫生進行調查詢問後之結果表[6]

對保持「警覺」與「專注」的需求,也可以從咖啡因消費的趨勢中看出。在美國,學生和普通人的咖啡因消耗量都在90%左右。服用神經增強劑的學生服用大麻等精神活性藥物的頻率也更高。一項針對德國大學教師(包括教授)的研究發現,其使用神經增強藥物的比例非常低。[247]只有0.9%的受訪者報告使用過這類藥物。不過,10%的受訪者願意在未來服用此類藥物,這或表明此類藥物的流行率或會上升。與工作有關的壓力是使用這類藥物的原因之一。

醫生

醫生在確定神經增強藥物的潛在濫用方面發揮重要作用。有些神經增強藥物無需處方,容易買到,而其他需要處方的藥物,則由醫生自行決定。在對瑞士精神科醫生和全科醫生進行的一項調查中,大多數受訪醫生一致認為,他們判斷功能障礙是否應被視為疾病的標準是,患者是否表示出主觀痛苦或對日常工作能力造成負面影響。[6]不過,大多數接受調查的醫生都認為,如果沒有明確的功能障礙跡象,他們不會開藥。[6]

參考文獻

引用

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Battleday, Ruairidh; Brem, Anna-Katharine. Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: a systematic review. European Neuropsychopharmacology. 28 July 2015, 25 (11): 1865–1881. PMID 26381811. S2CID 23319688. doi:10.1016/j.euroneuro.2015.07.028. 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 Repantis, Dimitris; Schlattmann, Peter. Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research. 2010, 62 (3): 187–206. PMID 20416377. doi:10.1016/j.phrs.2010.04.002. 
  3. ^ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Repantis, Dimitris. Acetylcholinesterase inhibitors and memantine for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research. June 2010, 61 (6): 473–481. PMID 20193764. doi:10.1016/j.phrs.2010.02.009. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Normann, Claus; Berger, Mathias. Neuroenhancement: status quo and perspectives (PDF). European Archives of Psychiatry and Clinical Neuroscience. November 2008, 258: 110–114 [2023-08-13]. PMID 18985306. S2CID 9733191. doi:10.1007/s00406-008-5022-2. (原始內容存檔 (PDF)於2019-11-21). [1]頁面存檔備份,存於互聯網檔案館
  5. ^ 5.0 5.1 5.2 5.3 5.4 Normann, Claus; Nissen, C. Neuroenhancement strategies for psychiatric disorders: rationale, status quo and perspectives. European Archives of Psychiatry and Clinical Neuroscience. November 2012, 262: 113–116. PMID 22932721. S2CID 42536705. doi:10.1007/s00406-012-0356-1. 
  6. ^ 6.0 6.1 6.2 6.3 6.4 Ott, R. Neuroenhancement - perspectives of Swiss psychiatrists and general practitioners. Swiss Medical Weekly. 2012, 142: w13707. PMID 23254869. doi:10.4414/smw.2012.13707 . 
  7. ^ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Fond, Guillaume; Micoulaud-Franchi, Jean-Arthur; Brunel, Lore; Macgregor, Alexandra; Miot, Stéphanie; Lopez, Régis; Richieri, Raphaëlle; Abbar, Mocrane; Lancon, Christophe; Repantis, Dimitris. Innovative mechanisms of action for pharmaceutical cognitive enhancement: A systematic review. Psychiatry Research. 30 September 2015, 229 (1): 12–20. ISSN 0165-1781. PMID 26187342. S2CID 23647057. doi:10.1016/j.psychres.2015.07.006 (英語). 
  8. ^ 8.0 8.1 8.2 Veit, Walter. Cognitive Enhancement and the Threat of Inequality. Journal of Cognitive Enhancement. 2018, 2 (4): 404–410. S2CID 158643005. doi:10.1007/s41465-018-0108-x . 
  9. ^ 9.0 9.1 9.2 9.3 9.4 9.5 Franke, A. G.; Northoff, R.; Hildt, E. The Case of Pharmacological Neuroenhancement: Medical, Judicial and Ethical Aspects from a German Perspective. Pharmacopsychiatry. November 2015, 48 (7): 256–264. PMID 26252723. S2CID 7179775. doi:10.1055/s-0035-1559640. 
  10. ^ 10.0 10.1 10.2 10.3 10.4 10.5 10.6 Ragan, Ian; Bard, I; Singh, I; Independent Scientific Committee on Drugs. What should we do about student use of cognitive enhancers? An analysis of current evidence. Neuropharmacology. February 2013, 64: 588–595. PMID 22732441. S2CID 207227699. doi:10.1016/j.neuropharm.2012.06.016. 
  11. ^ Mereu, Maddalena; Bonci, Antonello; Newman, Amy Hauck; Tanda, Gianluigi. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology. 1 October 2013, 229 (3): 415–434. ISSN 1432-2072. PMC 3800148 . PMID 23934211. doi:10.1007/s00213-013-3232-4 (英語). 
  12. ^ 12.0 12.1 12.2 12.3 12.4 Al-Shargie, Fares; Tariq, Usman; Mir, Hasan; Alawar, Hamad; Babiloni, Fabio; Al-Nashash, Hasan. Vigilance Decrement and Enhancement Techniques: A Review. Brain Sciences. August 2019, 9 (8): 178. ISSN 2076-3425. PMC 6721323 . PMID 31357524. doi:10.3390/brainsci9080178  (英語). 
  13. ^ [1][4][5][10][11][12]
  14. ^ Kongkeaw, Chuenjid; Dilokthornsakul, Piyameth; Thanarangsarit, Phurit; Limpeanchob, Nanteetip; Norman Scholfield, C. Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract. Journal of Ethnopharmacology. 10 January 2014, 151 (1): 528–535. ISSN 0378-8741. PMID 24252493. doi:10.1016/j.jep.2013.11.008 (英語). 
  15. ^ Aguiar, Sebastian; Borowski, Thomas. Neuropharmacological Review of the Nootropic Herb Bacopa monnieri. Rejuvenation Research. 1 August 2013, 16 (4): 313–326. ISSN 1549-1684. PMC 3746283 . PMID 23772955. doi:10.1089/rej.2013.1431. 
  16. ^ 16.0 16.1 Lorca, Cristina; Mulet, María; Arévalo-Caro, Catalina; Sanchez, M. Ángeles; Perez, Ainhoa; Perrino, María; Bach-Faig, Anna; Aguilar-Martínez, Alicia; Vilella, Elisabet; Gallart-Palau, Xavier; Serra, Aida. Plant-derived nootropics and human cognition: A systematic review. Critical Reviews in Food Science and Nutrition. 3 January 2022: 1–25. PMID 34978226. S2CID 245651213. doi:10.1080/10408398.2021.2021137. 
  17. ^ Kean, James D.; Downey, Luke A.; Stough, Con. Systematic Overview of Bacopa monnieri (L.) Wettst. Dominant Poly-Herbal Formulas in Children and Adolescents. Medicines. December 2017, 4 (4): 86. ISSN 2305-6320. PMC 5750610 . PMID 29165401. doi:10.3390/medicines4040086  (英語). 
  18. ^ Lorca, Cristina; Mulet, María; Arévalo-Caro, Catalina; Sanchez, M. Ángeles; Perez, Ainhoa; Perrino, María; Bach-Faig, Anna; Aguilar-Martínez, Alicia; Vilella, Elisabet; Gallart-Palau, Xavier; Serra, Aida. Plant-derived nootropics and human cognition: A systematic review. Critical Reviews in Food Science and Nutrition. 3 January 2022: 1–25. ISSN 1040-8398. PMID 34978226. S2CID 245651213. doi:10.1080/10408398.2021.2021137. 
  19. ^ [14][15][16][17][18]
  20. ^ 20.0 20.1 20.2 20.3 Franke, A.G.; Lieb, K. Pharmakologisches Neuroenhancement und "Hirndoping". Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 1 August 2010, 53 (8): 853–860. ISSN 1437-1588. PMID 20700786. doi:10.1007/s00103-010-1105-0 (德語). 
  21. ^ 21.0 21.1 21.2 21.3 Esposito, Massimiliano; Cocimano, Giuseppe; Ministrieri, Federica; Rosi, Giuseppe Li; Nunno, Nunzio Di; Messina, Giovanni; Sessa, Francesco; Salerno, Monica. Smart drugs and neuroenhancement: what do we know?. Frontiers in Bioscience-Landmark. 30 August 2021, 26 (8): 347–359. ISSN 2768-6701. PMID 34455764. doi:10.52586/4948. 
  22. ^ 22.0 22.1 22.2 22.3 22.4 Losch, D.; Schulze, J. Neuroenhancement. Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie. 1 November 2019, 69 (6): 368–371. ISSN 2198-0713. S2CID 240645044. doi:10.1007/s40664-019-0340-y (德語). 
  23. ^ 23.0 23.1 23.2 Iglseder, Bernhard. Doping für das Gehirn. Zeitschrift für Gerontologie und Geriatrie. 1 February 2018, 51 (2): 143–148. ISSN 1435-1269. PMID 29209802. doi:10.1007/s00391-017-1351-y (德語). 
  24. ^ 24.0 24.1 Caviola, Lucius; Faber, Nadira S. Pills or Push-Ups? Effectiveness and Public Perception of Pharmacological and Non-Pharmacological Cognitive Enhancement. Frontiers in Psychology. 2015, 6: 1852. ISSN 1664-1078. PMC 4667098 . PMID 26696922. doi:10.3389/fpsyg.2015.01852 . 
  25. ^ 25.0 25.1 25.2 Daubner, Johanna; Arshaad, Muhammad Imran; Henseler, Christina; Hescheler, Jürgen; Ehninger, Dan; Broich, Karl; Rawashdeh, Oliver; Papazoglou, Anna; Weiergräber, Marco. Pharmacological Neuroenhancement: Current Aspects of Categorization, Epidemiology, Pharmacology, Drug Development, Ethics, and Future Perspectives. Neural Plasticity. 13 January 2021, 2021: 1–27. ISSN 1687-5443. PMC 7817276 . PMID 33519929. doi:10.1155/2021/8823383  (英語). 
  26. ^ 26.0 26.1 26.2 Tang, Siu W.; Tang, Wayne H.; Leonard, Brian E. Managing interactions between cognitive enhancers and other psychotropics. International Clinical Psychopharmacology (Ovid Technologies (Wolters Kluwer Health)). 2017, 32 (4): 175–183. ISSN 0268-1315. doi:10.1097/yic.0000000000000172. 
  27. ^ [20][9][12][21][22][16][23][24][25][26]
  28. ^ 28.0 28.1 28.2 Jangwan, Nitish Singh; Ashraf, Ghulam Md; Ram, Veerma; Singh, Vinod; Alghamdi, Badrah S.; Abuzenadah, Adel Mohammad; Singh, Mamta F. Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects. Frontiers in Systems Neuroscience. 2022, 16. PMC 9538357 . PMID 36211589. doi:10.3389/fnsys.2022.1000495 . 
  29. ^ Nair, Prashant. Brain–machine interface. Proceedings of the National Academy of Sciences. 2013-11-12, 110 (46): 18343. Bibcode:2013PNAS..11018343N. ISSN 0027-8424. PMC 3831969 . PMID 24222678. doi:10.1073/pnas.1319310110 . 
  30. ^ "nootropic"[Title/Abstract] OR "smart drug"[Title/Abstract] - Search Results - PubMed. PubMed. [20 March 2023] (英語). 
  31. ^ Wood, Suzanne; Sage, Jennifer R.; Shuman, Tristan; Anagnostaras, Stephan G. Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation. Pharmacological Reviews. 1 January 2014, 66 (1): 193–221. ISSN 0031-6997. PMC 3880463 . PMID 24344115. doi:10.1124/pr.112.007054 (英語). 
  32. ^ Schifano, Fabrizio; Catalani, Valeria; Sharif, Safia; Napoletano, Flavia; Corkery, John Martin; Arillotta, Davide; Fergus, Suzanne; Vento, Alessandro; Guirguis, Amira. Benefits and Harms of 'Smart Drugs' (Nootropics) in Healthy Individuals. Drugs. 1 April 2022, 82 (6): 633–647. ISSN 1179-1950. PMID 35366192. S2CID 247860331. doi:10.1007/s40265-022-01701-7 (英語). 
  33. ^ Wingelaar-Jagt, Yara Q.; Bottenheft, Charelle; Riedel, Wim J.; Ramaekers, Johannes G. Effects of modafinil and caffeine on night-time vigilance of air force crewmembers: A randomized controlled trial. Journal of Psychopharmacology. February 2023, 37 (2): 172–180. ISSN 0269-8811. PMC 9912306 . PMID 36515156. doi:10.1177/02698811221142568 (英語). 
  34. ^ 34.0 34.1 34.2 34.3 34.4 34.5 Graf, William D.; Nagel, Saskia K.; Epstein, Leon G.; Miller, Geoffrey; Nass, Ruth; Larriviere, Dan. Pediatric neuroenhancement: Ethical, legal, social, and neurodevelopmental implications. Neurology. 26 March 2013, 80 (13): 1251–1260. ISSN 0028-3878. PMID 23486879. S2CID 207122859. doi:10.1212/WNL.0b013e318289703b (英語). 
  35. ^ 35.0 35.1 Weiergräber, Marco; Ehninger, Dan; Broich, Karl. Neuroenhancement and mood enhancement – Physiological and pharmacodynamical background. Medizinische Monatsschrift für Pharmazeuten. 1 April 2017, 40 (4): 154–164. ISSN 0342-9601. PMID 29952165. 
  36. ^ 36.0 36.1 36.2 Marazziti, Donatella; Avella, Maria Teresa; Ivaldi, Tea; Palermo, Stefania; Massa, Lucia; Della Vecchia, Alessandra; Basile, Lucia; Mucci, Federico. Neuroenhancement: state of the art and future perspectives. Clinical Neuropsychiatry. June 2021, 18 (3): 137–169. PMC 8629054 . PMID 34909030. doi:10.36131/cnfioritieditore20210303. 
  37. ^ 37.0 37.1 37.2 d'Angelo, L‐S Camilla; Savulich, George; Sahakian, Barbara J. Lifestyle use of drugs by healthy people for enhancing cognition, creativity, motivation and pleasure. British Journal of Pharmacology (Wiley). 2017-05-12, 174 (19): 3257–3267. ISSN 0007-1188. doi:10.1111/bph.13813. 
  38. ^ 38.0 38.1 38.2 Brühl, Annette B.; d'Angelo, Camilla; Sahakian, Barbara J. Neuroethical issues in cognitive enhancement: Modafinil as the example of a workplace drug?. Brain and Neuroscience Advances. January 2019, 3: 239821281881601. PMC 7058249 . PMID 32166175. doi:10.1177/2398212818816018. 
  39. ^ Bornemann, Joel. The Viability of Microdosing Psychedelics as a Strategy to Enhance Cognition and Well-being - An Early Review. Journal of Psychoactive Drugs. 7 August 2020, 52 (4): 300–308. ISSN 0279-1072. PMID 32362269. S2CID 218493319. doi:10.1080/02791072.2020.1761573. 
  40. ^ 40.0 40.1 40.2 40.3 40.4 40.5 40.6 40.7 40.8 de Jongh, Reinoud; Bolt, Ineke; Schermer, Maartje; Olivier, Berend. Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neuroscience & Biobehavioral Reviews (Elsevier BV). 2008, 32 (4): 760–776. ISSN 0149-7634. doi:10.1016/j.neubiorev.2007.12.001. 
  41. ^ 41.0 41.1 41.2 41.3 41.4 Sahakian, Barbara J.; Bruhl, Annette B.; Cook, Jennifer; Killikelly, Clare; Savulich, George; Piercy, Thomas; Hafizi, Sepehr; Perez, Jesus; Fernandez-Egea, Emilio; Suckling, John; Jones, Peter B. The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people. Philosophical Transactions of the Royal Society B: Biological Sciences. 19 September 2015, 370 (1677): 20140214. ISSN 0962-8436. PMC 4528826 . PMID 26240429. doi:10.1098/rstb.2014.0214 (英語). 
  42. ^ 42.0 42.1 42.2 42.3 42.4 42.5 Brühl, Annette B.; Sahakian, Barbara J. Drugs, games, and devices for enhancing cognition: implications for work and society. Annals of the New York Academy of Sciences. 2016, 1369 (1): 195–217 [2023-08-15]. Bibcode:2016NYASA1369..195B. PMID 27043232. S2CID 5111793. doi:10.1111/nyas.13040. (原始內容存檔於2023-03-12). 
  43. ^ Burk, Joshua A.; Blumenthal, Sarah A.; Maness, Eden B. Neuropharmacology of attention. European Journal of Pharmacology (Elsevier BV). 2018, 835: 162–168. ISSN 0014-2999. doi:10.1016/j.ejphar.2018.08.008. 
  44. ^ 44.0 44.1 Tuenter, Emmy; Foubert, Kenn; Pieters, Luc. Mood Components in Cocoa and Chocolate: The Mood Pyramid. Planta Medica. August 2018, 84 (12/13): 839–844. ISSN 0032-0943. PMID 29539647. S2CID 3912460. doi:10.1055/a-0588-5534 (英語). 
  45. ^ Marcora, Samuele. Can Doping be a Good Thing? Using Psychoactive Drugs to Facilitate Physical Activity Behaviour. Sports Medicine. 1 January 2016, 46 (1): 1–5. ISSN 1179-2035. PMID 26497149. S2CID 13448073. doi:10.1007/s40279-015-0412-x (英語). 
  46. ^ 46.0 46.1 46.2 Porsdam Mann, Sebastian; Sahakian, Barbara J. The increasing lifestyle use of modafinil by healthy people: safety and ethical issues. Current Opinion in Behavioral Sciences. 1 August 2015, 4: 136–141. ISSN 2352-1546. S2CID 53198934. doi:10.1016/j.cobeha.2015.05.004 (英語). 
  47. ^ 47.0 47.1 Mun, Monique; Wong, Andrew. Kratom and Phenibut: A Concise Review for Psychiatric Trainees. American Journal of Psychiatry Residents' Journal. 14 December 2020, 16 (2): 6–8. ISSN 2474-4662. S2CID 230589322. doi:10.1176/appi.ajp-rj.2020.160203 (英語). 
  48. ^ Peele, Stanton; Brodsky, Archie. Exploring psychological benefits associated with moderate alcohol use: a necessary corrective to assessments of drinking outcomes?. Drug and Alcohol Dependence. 10 November 2000, 60 (3): 221–247. ISSN 0376-8716. PMID 11053757. doi:10.1016/S0376-8716(00)00112-5 (英語). 
  49. ^ Wudarczyk, Olga A.; Earp, Brian D.; Guastella, Adam; Savulescu, Julian. Could intranasal oxytocin be used to enhance relationships? Research imperatives, clinical policy, and ethical considerations. Current Opinion in Psychiatry. September 2013, 26 (5): 474–484. PMC 3935449 . PMID 23880593. doi:10.1097/YCO.0b013e3283642e10. 
  50. ^ Buckner, Julia D.; Morris, Paige E.; Abarno, Cristina N.; Glover, Nina I.; Lewis, Elizabeth M. Biopsychosocial Model Social Anxiety and Substance Use Revised. Current Psychiatry Reports. 17 April 2021, 23 (6): 35. ISSN 1535-1645. PMID 33864136. S2CID 233261493. doi:10.1007/s11920-021-01249-5 (英語). 
  51. ^ 51.0 51.1 Peltier, MacKenzie R.; Sofuoglu, Mehmet. Chapter 23 - Pharmacological cognitive enhancers. Cognition and Addiction. Academic Press. 1 January 2020: 303–320. ISBN 978-0-12-815298-0 (英語). 
  52. ^ 52.0 52.1 Brady, Kathleen T.; Gray, Kevin M.; Tolliver, Bryan K. Cognitive enhancers in the treatment of substance use disorders: Clinical evidence. Pharmacology Biochemistry and Behavior. 1 August 2011, 99 (2): 285–294. ISSN 0091-3057. PMC 3114106 . PMID 21557964. doi:10.1016/j.pbb.2011.04.017 (英語). 
  53. ^ Kampman, Kyle M. The treatment of cocaine use disorder. Science Advances. 4 October 2019, 5 (10): eaax1532. Bibcode:2019SciA....5.1532K. ISSN 2375-2548. PMC 6795516 . PMID 31663022. doi:10.1126/sciadv.aax1532 (英語). 
  54. ^ Fluyau, Dimy; Cook, Sarah Clare; Chima, Ashmeer; Kailasam, Vasanth Kattalai; Revadigar, Neelambika. Pharmacological management of psychoactive substance withdrawal syndrome. Drugs & Therapy Perspectives. 1 November 2021, 37 (11): 519–535. ISSN 1179-1977. S2CID 244583239. doi:10.1007/s40267-021-00874-7 (英語). 
  55. ^ Erler, Alexandre; Forlini, Cynthia. Neuroenhancement. philpapers.org. 2020 [2023-08-17]. (原始內容存檔於2023-04-08) (英語). 
  56. ^ 56.0 56.1 Beda, Zsolt; Smith, Steven M.; Orr, Joseph. Creativity on demand – Hacking into creative problem solving. NeuroImage. 1 August 2020, 216: 116867. ISSN 1053-8119. PMID 32325208. S2CID 215823256. doi:10.1016/j.neuroimage.2020.116867 (英語). 
  57. ^ 57.0 57.1 57.2 Lanni, Cristina; Lenzken, Silvia C.; Pascale, Alessia; Del Vecchio, Igor; Racchi, Marco; Pistoia, Francesca; Govoni, Stefano. Cognition enhancers between treating and doping the mind. Pharmacological Research (Elsevier BV). 2008, 57 (3): 196–213. ISSN 1043-6618. doi:10.1016/j.phrs.2008.02.004. 
  58. ^ Neuroenhancement in Military Personnel: Conceptual and Methodological Promises and Challenge. [10 March 2023]. (原始內容存檔於2022-09-08) (英語). 
  59. ^ Tennison, Michael N.; Moreno, Jonathan D. Neuroenhancement and Therapy in National Defense Contexts. The Routledge Handbook of Neuroethics. 2017: 150–165 [2023-08-15]. ISBN 9781315708652. doi:10.4324/9781315708652-12. (原始內容存檔於2023-04-08). 
  60. ^ 60.0 60.1 60.2 Crawford, Cindy; Teo, Lynn; Lafferty, Lynn; Drake, Angela; Bingham, John J.; Gallon, Matthew D.; O'Connell, Meghan L.; Chittum, Holly K.; Arzola, Sonya M.; Berry, Kevin. Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutrition Reviews. June 2017, 75 (suppl_2): 17–35. PMID 28969341. doi:10.1093/nutrit/nux007. 
  61. ^ 61.0 61.1 Bagot, Kara Simone; Kaminer, Yifrah. Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction. 2014, 109 (4): 547–557. PMC 4471173 . PMID 24749160. doi:10.1111/add.12460. 
  62. ^ Mahdiani, Hamideh; Ungar, Michael. Can biomedical and cognitive enhancement increase psychological resilience?. Canadian Psychology. August 2021, 62 (3): 295–303. ISSN 1878-7304. S2CID 216387797. doi:10.1037/cap0000217 (英語). 
  63. ^ Budde, Henning; Wegner, Mirko. The Exercise Effect on Mental Health: Neurobiological Mechanisms. CRC Press. 17 April 2018 [2023-08-15]. ISBN 978-1-4987-3953-5. (原始內容存檔於2023-04-17) (英語). 
  64. ^ 64.0 64.1 64.2 64.3 64.4 64.5 64.6 64.7 Dresler, Martin; Sandberg, Anders; Bublitz, Christoph; Ohla, Kathrin; Trenado, Carlos; Mroczko-Wąsowicz, Aleksandra; Kühn, Simone; Repantis, Dimitris. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chemical Neuroscience. 20 March 2019, 10 (3): 1137–1148. ISSN 1948-7193. PMC 6429408 . PMID 30550256. doi:10.1021/acschemneuro.8b00571 (英語). 
  65. ^ Sherman, Brian J.; McRae-Clark, Aimee L. Treatment of Cannabis Use Disorder: Current Science and Future Outlook. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. May 2016, 36 (5): 511–535. PMC 4880536 . PMID 27027272. doi:10.1002/phar.1747 (英語). 
  66. ^ Bortolato, Beatrice; Miskowiak, Kamilla W.; Köhler, Cristiano A.; Maes, Michael; Fernandes, Brisa S.; Berk, Michael; Carvalho, André F. Cognitive remission: a novel objective for the treatment of major depression?. BMC Medicine. 22 January 2016, 14 (1): 9. ISSN 1741-7015. PMC 4724131 . PMID 26801406. doi:10.1186/s12916-016-0560-3. 
  67. ^ Ooi, Soo Liang; Green, Ruth; Pak, Sok Cheon. N-Acetylcysteine for the Treatment of Psychiatric Disorders: A Review of Current Evidence. BioMed Research International. 22 October 2018, 2018: e2469486. ISSN 2314-6133. PMC 6217900 . PMID 30426004. doi:10.1155/2018/2469486  (英語). 
  68. ^ Nery, Fabiano G.; Li, Wenbin; DelBello, Melissa P.; Welge, Jeffrey A. N-acetylcysteine as an adjunctive treatment for bipolar depression: A systematic review and meta-analysis of randomized controlled trials. Bipolar Disorders. 15 January 2021, 23 (7): 707–714. ISSN 1398-5647. PMID 33354859. S2CID 229692736. doi:10.1111/bdi.13039. 
  69. ^ Colpo, Gabriela D.; Leboyer, Marion; Dantzer, Robert; Trivedi, Mahdukar H.; Teixeira, Antonio L. Immune-based strategies for mood disorders: facts and challenges. Expert Review of Neurotherapeutics. 1 February 2018, 18 (2): 139–152. ISSN 1473-7175. PMC 5819337 . PMID 29179585. doi:10.1080/14737175.2018.1407242. 
  70. ^ Fernandes, Brisa S.; Dean, Olivia M.; Dodd, Seetal; Malhi, Gin S.; Berk, Michael. N-Acetylcysteine in Depressive Symptoms and Functionality: A Systematic Review and Meta-Analysis. The Journal of Clinical Psychiatry. 27 April 2016, 77 (4): e457–66. ISSN 0160-6689. PMID 27137430. S2CID 40688371. doi:10.4088/JCP.15r09984 (English). 
  71. ^ "Modafinil"[Title/Abstract] - Search Results - PubMed. PubMed. [13 March 2023] (英語). 
  72. ^ Woolf, Nicky. Silk Road sentencing: why governments can't win the war on darknet drugs. The Guardian. 31 May 2015 [30 December 2016]. (原始內容存檔於2019-04-13). 
  73. ^ Valette, Jean-Jacques. Du commerce illicite à la liberté d'expression totale, on a plongé dans le darknet. We Demain. 9 September 2016 [30 December 2016]. (原始內容存檔於2016-12-30). 
  74. ^ ("enhance"[Title/Abstract] AND "cognition"[Title/Abstract]) OR ("neuroenhancement"[Title/Abstract]) OR ("cognitive enhancement"[Title/Abstract]) - Search Results - PubMed. PubMed. [13 March 2023] (英語). 
  75. ^ Hara, Y.; McKeehan, N.; Dacks, P. A.; Fillit, H. M. Evaluation of the neuroprotective potential of n-acetylcysteine for prevention and treatment of cognitive aging and dementia. Journal of Prevention of Alzheimer's Disease. 1 September 2017,. J Prev Alz Dis 20174 (3): 201–206. PMID 29182711. S2CID 45647979. doi:10.14283/jpad.2017.22. 
  76. ^ Zhao, Danyue; Simon, James E.; Wu, Qingli. A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy. Critical Reviews in Food Science and Nutrition. 21 February 2020, 60 (4): 597–625. ISSN 1040-8398. PMID 30614258. S2CID 58598405. doi:10.1080/10408398.2018.1546668. 
  77. ^ 77.0 77.1 77.2 77.3 77.4 77.5 77.6 Onaolapo, Adejoke Yetunde; Obelawo, Adebimpe Yemisi; Onaolapo, Olakunle James. Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline. Current Aging Science. 2019, 12 (1): 2–14. PMC 6971896 . PMID 30864515. doi:10.2174/1874609812666190311160754 (英語). 
  78. ^ Ali, Fahad; Naz, Falaq; Jyoti, Smita; Siddique, Yasir Hasan. Health functionality of apigenin: A review. International Journal of Food Properties. 3 June 2017, 20 (6): 1197–1238. ISSN 1094-2912. S2CID 88642353. doi:10.1080/10942912.2016.1207188 (英語). 
  79. ^ Bonferoni, Maria Cristina; Rossi, Silvia; Sandri, Giuseppina; Ferrari, Franca; Gavini, Elisabetta; Rassu, Giovanna; Giunchedi, Paolo. Nanoemulsions for "Nose-to-Brain" Drug Delivery. Pharmaceutics. February 2019, 11 (2): 84. ISSN 1999-4923. PMC 6409749 . PMID 30781585. doi:10.3390/pharmaceutics11020084  (英語). 
  80. ^ Kaurav, Hemlata; Kapoor, Deepak N. Implantable systems for drug delivery to the brain. Therapeutic Delivery. December 2017, 8 (12): 1097–1107. PMID 29125063. doi:10.4155/tde-2017-0082. 
  81. ^ 81.0 81.1 81.2 Darwish, Mona; Kirby, Mary; Hellriegel, Edward T.; Robertson, Philmore. Armodafinil and Modafinil Have Substantially Different Pharmacokinetic Profiles Despite Having the Same Terminal Half-Lives. Clinical Drug Investigation. 1 September 2009, 29 (9): 613–623. ISSN 1179-1918. PMID 19663523. S2CID 6607186. doi:10.2165/11315280-000000000-00000 (英語). 
  82. ^ 82.0 82.1 Sheng, Ping; Hou, Lijun; Wang, Xiang; Wang, Xiaowen; Huang, Chengguang; Yu, Mingkun; Han, Xi; Dong, Yan. Efficacy of Modafinil on Fatigue and Excessive Daytime Sleepiness Associated with Neurological Disorders: A Systematic Review and Meta-Analysis. PLOS ONE. 3 December 2013, 8 (12): e81802. Bibcode:2013PLoSO...881802S. PMC 3849275 . PMID 24312590. doi:10.1371/journal.pone.0081802 . 
  83. ^ Darwish, Mona; Kirby, Mary; Hellriegel, Edward T.; Yang, Ronghua; Robertson, Philmore. Pharmacokinetic Profile of Armodafinil in Healthy Subjects. Clinical Drug Investigation. 1 February 2009, 29 (2): 87–100. ISSN 1179-1918. PMID 19133704. S2CID 24886727. doi:10.2165/0044011-200929020-00003 (英語). 
  84. ^ Getting smart to cognitive enhancers. eClinicalMedicine. 1 May 2019, 11: 1–2. ISSN 2589-5370. PMC 6610764 . PMID 31312801. S2CID 196810318. doi:10.1016/j.eclinm.2019.06.014 (English). 
  85. ^ 85.0 85.1 85.2 85.3 85.4 85.5 85.6 Malík, Matěj; Tlustoš, Pavel. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients. January 2022, 14 (16): 3367. ISSN 2072-6643. PMC 9415189 . PMID 36014874. doi:10.3390/nu14163367  (英語). 
  86. ^ Lynch, Gary. Pharmacological enhancement of memory or cognition in normal subjects. Frontiers in Systems Neuroscience (Frontiers Media SA). 2014, 8. ISSN 1662-5137. doi:10.3389/fnsys.2014.00090. 
  87. ^ 87.0 87.1 Fernstrom, John D.; Fernstrom, Madelyn H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. The Journal of Nutrition. 1 June 2007, 137 (6): S1539–S1547. ISSN 0022-3166. PMID 17513421. doi:10.1093/jn/137.6.1539S (英語). 
  88. ^ Riedel, Wim J; Klaassen, Tineke; Schmitt, Jeroen A. J. Tryptophan, mood, and cognitive function. Brain, Behavior, and Immunity. 1 October 2002, 16 (5): 581–589. ISSN 0889-1591. PMID 12401472. S2CID 42931109. doi:10.1016/S0889-1591(02)00013-2 (英語). [...] As noted above two experiments addressed the question how [acute tryptophan depletion (ATD)] affects cognitive functions in healthy individuals. These experiments shared one common dependent variable, which was the memory task. In the first study it was shown that ATD impaired long-term memory consolidation when a new word list was learned at 6 h after start of depletion [...] 
  89. ^ 89.0 89.1 Camfield, David A; Stough, Con; Farrimond, Jonathon; Scholey, Andrew B. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutrition Reviews. August 2014, 72 (8): 507–522. PMID 24946991. doi:10.1111/nure.12120. 
  90. ^ 90.0 90.1 Sohail, Anas Anas; Ortiz, Fernando; Varghese, Teresa; Fabara, Stephanie P.; Batth, Arshdeep S.; Sandesara, Darshan P.; Sabir, Ahtesham; Khurana, Mahika; Datta, Shae; Patel, Urvish K.; Sohail, Anas Anas; Ortiz, Juan Fernando; Varghese, Teresa; Fabara, Stephanie P.; Batth, Arshdeep S.; Sandesara, Darshan P.; Sabir, Ahtesham; Khurana, Mahika; Datta, Shae; Patel, Urvish K. The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic Review. Cureus. 30 December 2021, 13 (12): e20828. ISSN 2168-8184. PMC 8794723 . PMID 35111479. doi:10.7759/cureus.20828 (英語). 
  91. ^ 91.0 91.1 91.2 91.3 91.4 Meeusen, Romain; Decroix, Lieselot. Nutritional Supplements and the Brain. International Journal of Sport Nutrition and Exercise Metabolism. 1 March 2018, 28 (2): 200–211. ISSN 1543-2742. PMID 29252056. S2CID 4582295. doi:10.1123/ijsnem.2017-0314 (英語). 
  92. ^ Gunzelmann, Glenn; M. James, Stephen; Caldwell, Jo Lynn. Basic and applied science interactions in fatigue understanding and risk mitigation. Chapter 8 - Basic and applied science interactions in fatigue understanding and risk mitigation. Progress in Brain Research 246. Elsevier. 1 January 2019: 177–204. ISBN 9780444642509. PMID 31072561. S2CID 145885926. doi:10.1016/bs.pbr.2019.03.022 (英語). 
  93. ^ Young, Allan H. 'Memory, hither come': Psychopharmacology of memory and more. Journal of Psychopharmacology. June 2021, 35 (6): 619–620 [2023-08-16]. ISSN 0269-8811. PMID 34039101. S2CID 235217295. doi:10.1177/02698811211021065. (原始內容存檔於2023-04-18) (英語). 
  94. ^ Gonzalez, Natalie A.; Sakhamuri, Navya; Athiyaman, Sreekartthik; Randhi, Bhawna; Gutlapalli, Sai Dheeraj; Pu, Jingxiong; Zaidi, Maheen F.; Patel, Maithily; Atluri, Lakshmi Malvika; Franchini, Ana P. Arcia; Gonzalez, Natalie A.; Sakhamuri, Navya; Athiyaman, Sreekartthik; Randhi, Bhawna; Gutlapalli, Sai Dheeraj; Pu, Jingxiong; Zaidi, Maheen F.; Patel, Maithily; Atluri, Lakshmi Malvika; Franchini, Ana P. Arcia. A Systematic Review of Yoga and Meditation for Attention-Deficit/Hyperactivity Disorder in Children. Cureus. 14 March 2023, 15 (3): e36143. ISSN 2168-8184. PMC 10101238 . PMID 37065343. S2CID 257541572. doi:10.7759/cureus.36143 (英語). 
  95. ^ Baumel, Barry S.; Doraiswamy, P. Murali; Sabbagh, Marwan; Wurtman, Richard. Potential Neuroregenerative and Neuroprotective Effects of Uridine/Choline-Enriched Multinutrient Dietary Intervention for Mild Cognitive Impairment: A Narrative Review. Neurology and Therapy. 1 June 2021, 10 (1): 43–60. ISSN 2193-6536. PMC 8139993 . PMID 33368017. doi:10.1007/s40120-020-00227-y (英語). 
  96. ^ Wurtman, Richard J; Cansev, Mehmet; Sakamoto, Toshimasa; Ulus, Ismael. Nutritional modifiers of aging brain function: use of uridine and other phosphatide precursors to increase formation of brain synapses: Nutrition Reviews, Vol. 68, No. s2. Nutrition Reviews. December 2010, 68 (Suppl 2): S88–S101. PMC 3062998 . PMID 21091953. doi:10.1111/j.1753-4887.2010.00344.x. 
  97. ^ 97.0 97.1 Cardoso, Carlos; Afonso, Cláudia; Bandarra, Narcisa M. Dietary DHA and health: cognitive function ageing. Nutrition Research Reviews. December 2016, 29 (2): 281–294. ISSN 0954-4224. PMID 27866493. S2CID 4243219. doi:10.1017/S0954422416000184 (英語). 
  98. ^ 98.0 98.1 98.2 98.3 Van Puyvelde, Martine; Van Cutsem, Jeroen; Lacroix, Emilie; Pattyn, Nathalie. A State-of-the-Art Review on the Use of Modafinil as A Performance-enhancing Drug in the Context of Military Operationality. Military Medicine. 11 October 2021, 187 (11–12): 1286–1298. ISSN 0026-4075. PMID 34632515. doi:10.1093/milmed/usab398. 
  99. ^ 99.0 99.1 99.2 Mohamed, Ahmed Dahir. Neuroethical issues in pharmacological cognitive enhancement. WIREs Cognitive Science (Wiley). 2014-07-28, 5 (5): 533–549. ISSN 1939-5078. doi:10.1002/wcs.1306. 
  100. ^ 100.0 100.1 100.2 100.3 Sousa, Ana; Dinis-Oliveira, Ricardo Jorge. Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects. Substance Abuse. 2 April 2020, 41 (2): 155–173. ISSN 0889-7077. PMID 31951804. S2CID 210709160. doi:10.1080/08897077.2019.1700584. 
  101. ^ Minzenberg, Michael J; Carter, Cameron S. Modafinil: A Review of Neurochemical Actions and Effects on Cognition. Neuropsychopharmacology. June 2008, 33 (7): 1477–1502. PMID 17712350. S2CID 13752498. doi:10.1038/sj.npp.1301534. 
  102. ^ Hofmann, Stefan G.; Mundy, Elizabeth A.; Curtiss, Joshua; Hofmann, Stefan G.; Mundy, Elizabeth A.; Curtiss, Joshua. Neuroenhancement of Exposure Therapy in Anxiety Disorders. AIMS Neuroscience. 2015, 2 (3): 123–138. PMC 4545667 . PMID 26306326. doi:10.3934/Neuroscience.2015.3.123. 
  103. ^ Zager, Adriano. Modulating the immune response with the wake-promoting drug modafinil: A potential therapeutic approach for inflammatory disorders. Brain, Behavior, and Immunity. 1 August 2020, 88: 878–886. ISSN 0889-1591. PMID 32311496. S2CID 215807973. doi:10.1016/j.bbi.2020.04.038 (英語). 
  104. ^ Heilman, Kenneth M. Possible Brain Mechanisms of Creativity. Archives of Clinical Neuropsychology (Oxford University Press (OUP)). 2016-03-21, 31 (4): 285–296. ISSN 0887-6177. doi:10.1093/arclin/acw009. 
  105. ^ 105.0 105.1 105.2 Tennison, Michael N.; Moreno, Jonathan D. Neuroenhancement and Therapy in National Defense Contexts. The Routledge Handbook of Neuroethics. 
  106. ^ Genetically modified neurons could help us connect to implants. New Scientist. [1 February 2022]. (原始內容存檔於2023-05-28). 
  107. ^ Scientists program cells to carry out gene-guided construction projects. phys.org. [5 April 2020]. (原始內容存檔於2023-04-08) (美國英語). 
  108. ^ Otto, Kevin J.; Schmidt, Christine E. Neuron-targeted electrical modulation. Science. 20 March 2020, 367 (6484): 1303–1304. Bibcode:2020Sci...367.1303O. PMID 32193309. S2CID 213192749. doi:10.1126/science.abb0216. 
  109. ^ Liu, Jia; Kim, Yoon Seok; Richardson, Claire E.; Tom, Ariane; Ramakrishnan, Charu; Birey, Fikri; Katsumata, Toru; Chen, Shucheng; Wang, Cheng; Wang, Xiao; Joubert, Lydia-Marie; Jiang, Yuanwen; Wang, Huiliang; Fenno, Lief E.; Tok, Jeffrey B.-H.; Pașca, Sergiu P.; Shen, Kang; Bao, Zhenan; Deisseroth, Karl. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science. 20 March 2020, 367 (6484): 1372–1376. Bibcode:2020Sci...367.1372L. PMC 7527276 . PMID 32193327. S2CID 213191980. doi:10.1126/science.aay4866. 
  110. ^ Bolakhe, Saugat. Lego Robot with an Organic 'Brain' Learns to Navigate a Maze. Scientific American. [1 February 2022]. (原始內容存檔於2023-04-08) (英語). 
  111. ^ Sample, Ian. Bionic neurons could enable implants to restore failing brain circuits. The Guardian. 3 December 2019 [27 February 2023]. (原始內容存檔於2023-04-08). 
  112. ^ Abu-Hassan, Kamal; Taylor, Joseph D.; Morris, Paul G.; Donati, Elisa; Bortolotto, Zuner A.; Indiveri, Giacomo; Paton, Julian F. R.; Nogaret, Alain. Optimal solid state neurons. Nature Communications. 3 December 2019, 10 (1): 5309. Bibcode:2019NatCo..10.5309A. ISSN 2041-1723. PMC 6890780 . PMID 31796727. doi:10.1038/s41467-019-13177-3 (英語). 
  113. ^ 113.0 113.1 Buchanan, Allen. Cognitive enhancement and education. Theory and Research in Education. July 2011, 9 (2): 145–162. ISSN 1477-8785. S2CID 145441073. doi:10.1177/1477878511409623 (英語). 
  114. ^ Nakhaee, Samaneh; Kooshki, Alireza; Hormozi, Ali; Akbari, Aref; Mehrpour, Omid; Farrokhfall, Khadijeh. Cinnamon and cognitive function: a systematic review of preclinical and clinical studies. Nutritional Neuroscience. 18 January 2023: 1–15. ISSN 1028-415X. PMID 36652384. S2CID 255969320. doi:10.1080/1028415X.2023.2166436. 
  115. ^ Gratton, Gabriele; Weaver, Samuel R.; Burley, Claire V.; Low, Kathy A.; Maclin, Edward L.; Johns, Paul W.; Pham, Quang S.; Lucas, Samuel J. E.; Fabiani, Monica; Rendeiro, Catarina. Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults. Scientific Reports. 24 November 2020, 10 (1): 19409. Bibcode:2020NatSR..1019409G. ISSN 2045-2322. PMC 7687895 . PMID 33235219. doi:10.1038/s41598-020-76160-9 (英語). 
  116. ^ Melzer, Thayza Martins; Manosso, Luana Meller; Yau, Suk-yu; Gil-Mohapel, Joana; Brocardo, Patricia S. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. International Journal of Molecular Sciences. January 2021, 22 (9): 5026. ISSN 1422-0067. PMC 8126018 . PMID 34068525. doi:10.3390/ijms22095026  (英語). 
  117. ^ 117.0 117.1 Socci, Valentina; Tempesta, Daniela; Desideri, Giovambattista; De Gennaro, Luigi; Ferrara, Michele. Enhancing Human Cognition with Cocoa Flavonoids. Frontiers in Nutrition. 2017, 4: 19. ISSN 2296-861X. PMC 5432604 . PMID 28560212. doi:10.3389/fnut.2017.00019 . 
  118. ^ Kent, K.; Charlton, K. E.; Netzel, M.; Fanning, K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: a systematic review. Journal of Human Nutrition and Dietetics. June 2017, 30 (3): 260–274. PMID 27730693. S2CID 4344504. doi:10.1111/jhn.12431 (英語). 
  119. ^ Zamri, Nurul Ashykin; Ghani, Nurhafizah; Ismail, Che Aishah Nazariah; Zakaria, Rahimah; Shafin, Nazlahshaniza. Honey on brain health: A promising brain booster. Frontiers in Aging Neuroscience. 2023, 14. ISSN 1663-4365. PMC 9887050 . PMID 36733498. doi:10.3389/fnagi.2022.1092596 . 
  120. ^ Kennedy, David O. Polyphenols and the Human Brain: Plant "Secondary Metabolite" Ecologic Roles and Endogenous Signaling Functions Drive Benefits. Advances in Nutrition. 1 September 2014, 5 (5): 515–533. ISSN 2161-8313. PMC 4188223 . PMID 25469384. doi:10.3945/an.114.006320 (英語). 
  121. ^ Gomez-Pinilla, Fernando; Nguyen, Trang T J. Natural mood foods: The actions of polyphenols against psychiatric and cognitive disorders. Nutritional Neuroscience. 1 May 2012, 15 (3): 127–133. ISSN 1028-415X. PMC 3355196 . PMID 22334236. doi:10.1179/1476830511Y.0000000035. 
  122. ^ Vauzour, David; Rodriguez-Mateos, Ana; Corona, Giulia; Oruna-Concha, Maria Jose; Spencer, Jeremy P. E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients. November 2010, 2 (11): 1106–1131. ISSN 2072-6643. PMC 3257622 . PMID 22254000. doi:10.3390/nu2111106  (英語). 
  123. ^ Guerrieri, Davide; Moon, Hyo Youl; van Praag, Henriette. Exercise in a Pill: The Latest on Exercise-Mimetics. Brain Plasticity. 1 January 2017, 2 (2): 153–169. ISSN 2213-6304. PMC 5928571 . PMID 29765854. doi:10.3233/BPL-160043 (英語). 
  124. ^ Haskell-Ramsay, Crystal F.; Schmitt, Jeroen; Actis-Goretta, Lucas. The Impact of Epicatechin on Human Cognition: The Role of Cerebral Blood Flow. Nutrients. August 2018, 10 (8): 986. ISSN 2072-6643. PMC 6115745 . PMID 30060538. doi:10.3390/nu10080986  (英語). 
  125. ^ Strasser, Barbara; Gostner, Johanna M.; Fuchs, Dietmar. Mood, food, and cognition: role of tryptophan and serotonin . Current Opinion in Clinical Nutrition and Metabolic Care. January 2016, 19 (1): 55–61 [2023-08-16]. PMID 26560523. S2CID 12387611. doi:10.1097/MCO.0000000000000237. (原始內容存檔於2023-06-06). 
  126. ^ 126.0 126.1 126.2 126.3 126.4 126.5 126.6 Pranav, Joshi C. A review on natural memory enhancers (nootropics) (PDF). Unique Journal of Engineering and Advanced Sciences. 2013 [2023-08-16]. (原始內容存檔 (PDF)於2023-04-08) (英語). 
  127. ^ Jongkees, Bryant J.; Hommel, Bernhard; Kühn, Simone; Colzato, Lorenza S. Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review. Journal of Psychiatric Research. 1 November 2015, 70: 50–57. ISSN 0022-3956. PMID 26424423. doi:10.1016/j.jpsychires.2015.08.014 (英語). 
  128. ^ 128.0 128.1 128.2 McCarthy, Bozena; O'Neill, Graham; Abu-Ghannam, Nissreen. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Marine Drugs. August 2022, 20 (8): 493. ISSN 1660-3397. PMC 9410000 . PMID 36005495. doi:10.3390/md20080493  (英語). 
  129. ^ Lee, Gihyun; Bae, Hyunsu. Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression. BioMed Research International. 2017, 2017: 1–11. PMC 5414506 . PMID 28503571. doi:10.1155/2017/6596241 . 
  130. ^ Venigalla, Madhuri; Gyengesi, Erika; Münch, Gerald. Curcumin and Apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regeneration Research. August 2015, 10 (8): 1181–1185. ISSN 1673-5374. PMC 4590215 . PMID 26487830. doi:10.4103/1673-5374.162686. 
  131. ^ Salehi, Bahare; Venditti, Alessandro; Sharifi-Rad, Mehdi; Kręgiel, Dorota; Sharifi-Rad, Javad; Durazzo, Alessandra; Lucarini, Massimo; Santini, Antonello; Souto, Eliana B.; Novellino, Ettore; Antolak, Hubert; Azzini, Elena; Setzer, William N.; Martins, Natália. The Therapeutic Potential of Apigenin. International Journal of Molecular Sciences. January 2019, 20 (6): 1305. ISSN 1422-0067. PMC 6472148 . PMID 30875872. doi:10.3390/ijms20061305  (英語). 
  132. ^ Arcusa, Raúl; Villaño, Débora; Marhuenda, Javier; Cano, Miguel; Cerdà, Begoña; Zafrilla, Pilar. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Frontiers in Nutrition. 2022, 9: 809621. ISSN 2296-861X. PMC 8971783 . PMID 35369082. doi:10.3389/fnut.2022.809621 . 
  133. ^ Etheridge, Christopher John; Derbyshire, Emma. Herbal infusions and health: A review of findings from human studies, mechanisms and future research directions. Nutrition & Food Science. 1 January 2020, 50 (5): 969–985. ISSN 0034-6659. S2CID 211002387. doi:10.1108/NFS-08-2019-0263. 
  134. ^ Howes, Melanie-Jayne R.; Perry, Nicolette S.L.; Vásquez-Londoño, Carlos; Perry, Elaine K. Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing. British Journal of Pharmacology. March 2020, 177 (6): 1294–1315. ISSN 0007-1188. PMC 7056459 . PMID 31650528. doi:10.1111/bph.14898 (英語). 
  135. ^ Roe, Amy L.; Venkataraman, Arvind. The Safety and Efficacy of Botanicals with Nootropic Effects. Current Neuropharmacology. September 2021, 19 (9): 1442–1467. PMC 8762178 . PMID 34315377. doi:10.2174/1570159X19666210726150432. 
  136. ^ Hussain, S. M.; Syeda, A. F.; Alshammari, M.; Alnasser, S.; Alenzi, N. D.; Alanazi, S. T.; Nandakumar, K. Cognition enhancing effect of rosemary (Rosmarinus officinalis L.) in lab animal studies: a systematic review and meta-analysis. Brazilian Journal of Medical and Biological Research. 9 February 2022, 55: e11593. ISSN 0100-879X. PMC 8851910 . PMID 35170682. doi:10.1590/1414-431X2021e11593 (英語). 
  137. ^ 137.0 137.1 Lewis, John E.; Poles, Jillian; Shaw, Delaney P.; Karhu, Elisa; Khan, Sher Ali; Lyons, Annabel E.; Sacco, Susana Barreiro; McDaniel, H. Reginald. The effects of twenty-one nutrients and phytonutrients on cognitive function: A narrative review. Journal of Clinical and Translational Research. 26 August 2021, 7 (4): 575–620. ISSN 2424-810X. PMC 8445631 . PMID 34541370. doi:10.18053/jctres.07.202104.014. 
  138. ^ Suliman, Noor Azuin; Mat Taib, Che Norma; Mohd Moklas, Mohamad Aris; Adenan, Mohd Ilham; Hidayat Baharuldin, Mohamad Taufik; Basir, Rusliza. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic. Evidence-Based Complementary and Alternative Medicine. 30 August 2016, 2016: e4391375. ISSN 1741-427X. PMC 5021479 . PMID 27656235. doi:10.1155/2016/4391375  (英語). 
  139. ^ Roschel, Hamilton; Gualano, Bruno; Ostojic, Sergej M.; Rawson, Eric S. Creatine Supplementation and Brain Health. Nutrients. February 2021, 13 (2): 586. ISSN 2072-6643. PMC 7916590 . PMID 33578876. doi:10.3390/nu13020586  (英語). 
  140. ^ Dolan, Eimear; Gualano, Bruno; Rawson, Eric S. Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. European Journal of Sport Science. 2 January 2019, 19 (1): 1–14. ISSN 1746-1391. PMID 30086660. S2CID 51936612. doi:10.1080/17461391.2018.1500644. 
  141. ^ 141.0 141.1 Crawford, Cindy; Boyd, Courtney; Deuster, Patricia A. Dietary Supplement Ingredients for Optimizing Cognitive Performance Among Healthy Adults: A Systematic Review. The Journal of Alternative and Complementary Medicine. 1 November 2021, 27 (11): 940–958. ISSN 1075-5535. PMID 34370563. S2CID 236969310. doi:10.1089/acm.2021.0135. 
  142. ^ Dyall, Simon C. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Frontiers in Aging Neuroscience. 2015, 7: 52. ISSN 1663-4365. PMC 4404917 . PMID 25954194. doi:10.3389/fnagi.2015.00052 . 
  143. ^ Singh, Jessica E. Dietary Sources of Omega-3 Fatty Acids Versus Omega-3 Fatty Acid Supplementation Effects on Cognition and Inflammation. Current Nutrition Reports. 1 September 2020, 9 (3): 264–277. ISSN 2161-3311. PMID 32621236. S2CID 220306807. doi:10.1007/s13668-020-00329-x (英語). 
  144. ^ Fadó, Rut; Molins, Anna; Rojas, Rocío; Casals, Núria. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients. January 2022, 14 (19): 4137. ISSN 2072-6643. PMC 9572450 . PMID 36235789. doi:10.3390/nu14194137  (英語). 
  145. ^ Weiser, Michael; Butt, Christopher; Mohajeri, M. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients (MDPI AG). 2016-02-17, 8 (2): 99. ISSN 2072-6643. doi:10.3390/nu8020099. 
  146. ^ [142][143][128][144][145][97] and other nutrients and phytonutrients[137][141]
  147. ^ Muscaritoli, Maurizio. The Impact of Nutrients on Mental Health and Well-Being: Insights From the Literature. Frontiers in Nutrition. 2021, 8: 656290. ISSN 2296-861X. PMC 7982519 . PMID 33763446. doi:10.3389/fnut.2021.656290 . 
  148. ^ Venkatramanan, Sudha; Armata, Ilianna E; Strupp, Barbara J; Finkelstein, Julia L. Vitamin B-12 and Cognition in Children. Advances in Nutrition. 1 September 2016, 7 (5): 879–888. ISSN 2161-8313. PMC 5015033 . PMID 27633104. doi:10.3945/an.115.012021 (英語). Despite the high prevalence of vitamin B-12 insufficiency and associated risk of adverse cognitive outcomes in children, to our knowledge, no studies to date have been conducted to examine the effects of vitamin B-12 supplementation on cognition in children. 
  149. ^ Benton, David. To establish the parameters of optimal nutrition do we need to consider psychological in addition to physiological parameters?. Molecular Nutrition & Food Research. January 2013, 57 (1): 6–19. PMID 23038656. doi:10.1002/mnfr.201200477 (英語). The decarboyxlase enzymes have pyridoxal phosphate as a coenzyme, the form in which vitamin B6 occurs most commonly in the diet. Yet there is evidence of marginal intakes of this vitamin: e.g. using a biochemical measure of pyridoxal phosphate status there was a subgroup of about 10% of British school children who were deficient [89]. In young British adults 27.7% of males and 36.6% of females were deficient as judged by the same measure 
  150. ^ Stevens, Gretchen A.; Beal, Ty; Mbuya, Mduduzi N. N.; Luo, Hanqi; Neufeld, Lynnette M.; Addo, O. Yaw; Adu-Afarwuah, Seth; Alayón, Silvia; Bhutta, Zulfiqar; Brown, Kenneth H.; Jefferds, Maria Elena; Engle-Stone, Reina; Fawzi, Wafaie; Hess, Sonja Y.; Johnston, Robert; Katz, Joanne; Krasevec, Julia; McDonald, Christine M.; Mei, Zuguo; Osendarp, Saskia; Paciorek, Christopher J.; Petry, Nicolai; Pfeiffer, Christine M.; Ramirez-Luzuriaga, Maria J.; Rogers, Lisa M.; Rohner, Fabian; Sethi, Vani; Suchdev, Parminder S.; Tessema, Masresha; Villapando, Salvador; Wieringa, Frank T.; Williams, Anne M.; Woldeyahannes, Meseret; Young, Melissa F. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. The Lancet Global Health. 1 November 2022, 10 (11): e1590–e1599. ISSN 2214-109X. PMID 36240826. S2CID 252857990. doi:10.1016/S2214-109X(22)00367-9  (English). 
  151. ^ Enderami, Athena; Zarghami, Mehran; Darvishi-Khezri, Hadi. The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review. Neurological Sciences. 1 October 2018, 39 (10): 1667–1675. ISSN 1590-3478. PMID 29936555. S2CID 49421574. doi:10.1007/s10072-018-3473-4 (英語). 
  152. ^ Philippou, Elena; Constantinou, Marios. The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence. Advances in Nutrition. 1 March 2014, 5 (2): 119–130. ISSN 2161-8313. PMC 3951795 . PMID 24618754. doi:10.3945/an.113.004960 (英語). 
  153. ^ Rebelos, Eleni; Rinne, Juha O.; Nuutila, Pirjo; Ekblad, Laura L. Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline—Does Insulin Have Anything to Do with It? A Narrative Review. Journal of Clinical Medicine. January 2021, 10 (7): 1532. ISSN 2077-0383. PMC 8038699 . PMID 33917464. doi:10.3390/jcm10071532  (英語). 
  154. ^ Gubert, Carolina; Hannan, Anthony J. Exercise mimetics: harnessing the therapeutic effects of physical activity. Nature Reviews Drug Discovery. November 2021, 20 (11): 862–879. ISSN 1474-1784. PMID 34103713. S2CID 235379365. doi:10.1038/s41573-021-00217-1 (英語). 
  155. ^ Yamada, Yujiro; Frith, Emily M.; Wong, Vickie; Spitz, Robert W.; Bell, Zachary W.; Chatakondi, Raksha N.; Abe, Takashi; Loenneke, Jeremy P. Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction. Medical Hypotheses. 1 June 2021, 151: 110586. ISSN 0306-9877. PMID 33848917. S2CID 233233538. doi:10.1016/j.mehy.2021.110586 (英語). 
  156. ^ Taubert, Marco; Villringer, Arno; Lehmann, Nico. Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning. Frontiers in Human Neuroscience. 2015, 9: 692. ISSN 1662-5161. PMC 4714627 . PMID 26834602. doi:10.3389/fnhum.2015.00692 . 
  157. ^ 157.0 157.1 157.2 Tennison, Michael N.; Moreno, Jonathan D. Neuroscience、 Ethics、 and National Security: The State of the Art. PLOS Biology. 20 March 2012, 10 (3): e1001289. ISSN 1545-7885. PMC 3308927 . PMID 22448146. doi:10.1371/journal.pbio.1001289 (英語). 
  158. ^ Asua, Diego; Bougamra, Ghassen; Calleja-Felipe, María; Morales, Miguel; Knafo, Shira. Peptides Acting as Cognitive Enhancers. Neuroscience. 1 February 2018, 370: 81–87. ISSN 0306-4522. PMID 29030286. S2CID 10269993. doi:10.1016/j.neuroscience.2017.10.002 (英語). 
  159. ^ Wright, John W.; Harding, Joseph W. The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease. Journal of Alzheimer's Disease. 1 January 2015, 45 (4): 985–1000. ISSN 1387-2877. PMID 25649658. doi:10.3233/JAD-142814 (英語). 
  160. ^ Ho, Jean K.; Nation, Daniel A. Cognitive benefits of angiotensin IV and angiotensin-(1–7): A systematic review of experimental studies. Neuroscience & Biobehavioral Reviews. 1 September 2018, 92: 209–225. ISSN 0149-7634. PMC 8916541 . PMID 29733881. doi:10.1016/j.neubiorev.2018.05.005 (英語). 
  161. ^ Hallberg, Mathias; Larhed, Mats. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Frontiers in Pharmacology. 2020, 11: 590855. ISSN 1663-9812. PMC 7593869 . PMID 33178027. doi:10.3389/fphar.2020.590855 . 
  162. ^ Stern, Sarah A.; Alberini, Cristina M. Mechanisms of memory enhancement. WIREs Systems Biology and Medicine. January 2013, 5 (1): 37–53. ISSN 1939-5094. PMC 3527655 . PMID 23151999. doi:10.1002/wsbm.1196 (英語). 
  163. ^ Hofmann, Stefan G.; Fang, Angela; Gutner, Cassidy A. Cognitive enhancers for the treatment of anxiety disorders. Restorative Neurology and Neuroscience. 1 January 2014, 32 (1): 183–195. ISSN 0922-6028. PMID 23542909. doi:10.3233/RNN-139002 (英語). 
  164. ^ Diekelmann, Susanne. Sleep for cognitive enhancement. Frontiers in Systems Neuroscience. 2014, 8: 46. ISSN 1662-5137. PMC 3980112 . PMID 24765066. doi:10.3389/fnsys.2014.00046 . 
  165. ^ Merlo, Emiliano; Milton, Amy L; Everitt, Barry J. Enhancing cognition by affecting memory reconsolidation (PDF). Current Opinion in Behavioral Sciences. 1 August 2015, 4: 41–47 [2023-08-16]. ISSN 2352-1546. S2CID 53170506. doi:10.1016/j.cobeha.2015.02.003. (原始內容存檔 (PDF)於2023-05-16) (英語). 
  166. ^ Desibhatla, Mukund. The Development and Evaluation of Novel DA Transport Inhibitors and their Effects on Effort-Related Motivation: A Review. Honors Scholar Theses. 1 May 2021 [2023-08-16]. (原始內容存檔於2023-04-08). 
  167. ^ Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea. Cognitive Enhancers (Nootropics). Part 1: Drugs Interacting with Receptors. Journal of Alzheimer's Disease. 1 January 2012, 32 (4): 793–887. ISSN 1387-2877. PMID 22886028. doi:10.3233/JAD-2012-121186 (英語). 
  168. ^ Partin, Kathryn M. AMPA receptor potentiators: from drug design to cognitive enhancement. Current Opinion in Pharmacology. 1 February 2015, 20: 46–53. ISSN 1471-4892. PMC 4318786 . PMID 25462292. doi:10.1016/j.coph.2014.11.002 (英語). 
  169. ^ Þorsteinsson, Haraldur; Karlsson, KarlÆgir. Is Sleep Beyond Our Control?. The Open Sleep Journal. 12 August 2009, 2 (1): 48–55. doi:10.2174/1874620900902010048. 
  170. ^ Kato, Taro; Duman, Ronald S. Rapastinel、 a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms. Pharmacology Biochemistry and Behavior. 1 January 2020, 188: 172827. ISSN 0091-3057. PMID 31733218. S2CID 207976034. doi:10.1016/j.pbb.2019.172827 (英語). 
  171. ^ Burgdorf, Jeffrey; Zhang, Xiao-lei; Weiss, Craig; Matthews, Elizabeth; Disterhoft, John F.; Stanton, Patric K.; Moskal, Joseph R. The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory、 in young adult and learning impaired aging rats. Neurobiology of Aging. 1 April 2011, 32 (4): 698–706. ISSN 0197-4580. PMC 3035742 . PMID 19446371. doi:10.1016/j.neurobiolaging.2009.04.012 (英語). 
  172. ^ R. Moskal, Joseph; S. Burgdorf, Jeffrey; K. Stanton, Patric; A. Kroes, Roger; F. Disterhoft, John; M. Burch, Ronald; Amin Khan, M. The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant. Current Neuropharmacology. 2017, 15 (1): 47–56 [2023-08-16]. PMC 5327451 . PMID 26997507. doi:10.2174/1570159X14666160321122703. (原始內容存檔於2023-04-08) (英語). 
  173. ^ Costa-Mattioli, Mauro; Walter, Peter. The integrated stress response: From mechanism to disease. Science. 24 April 2020, 368 (6489): eaat5314. ISSN 0036-8075. PMC 8997189 . PMID 32327570. doi:10.1126/science.aat5314 (英語). 
  174. ^ Jin, Yang; Saatcioglu, Fahri. Targeting the Unfolded Protein Response in Hormone-Regulated Cancers. Trends in Cancer. 1 February 2020, 6 (2): 160–171. ISSN 2405-8033. PMID 32061305. S2CID 211136354. doi:10.1016/j.trecan.2019.12.001 (英語). 
  175. ^ Tardner, P. The use of citicoline for the treatment of cognitive decline and cognitive impairment: A meta-analysis of pharmacological literature • International Journal of Environmental Science & Technology. International Journal of Environmental Science & Technology. 2020-08-30 [2020-08-31]. (原始內容存檔於2023-06-03) (美國英語). 
  176. ^ Atack, John R. GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement. Current Topics in Medicinal Chemistry. 2011, 11 (9): 1203–1214. PMID 21050171. doi:10.2174/156802611795371314 (英語). 
  177. ^ Kleczkowska, Patrycja. Chimeric Structures in Mental Illnesses—"Magic" Molecules Specified for Complex Disorders. International Journal of Molecular Sciences. January 2022, 23 (7): 3739. ISSN 1422-0067. PMC 8998808 . PMID 35409098. doi:10.3390/ijms23073739  (英語). 
  178. ^ Sharma, Horrick; Santra, Soumava; Dutta, Aloke. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope?. Future Medicinal Chemistry. November 2015, 7 (17): 2385–2406. PMC 4976848 . PMID 26619226. doi:10.4155/fmc.15.134. 
  179. ^ Subbaiah, Murugaiah A. M. Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges. Journal of Medicinal Chemistry. 22 March 2018, 61 (6): 2133–2165. ISSN 0022-2623. PMID 28731336. doi:10.1021/acs.jmedchem.6b01827 (英語). 
  180. ^ Jacobson, Laura H.; Hoyer, Daniel; Lecea, Luis. Hypocretins (orexins): The ultimate translational neuropeptides. Journal of Internal Medicine. May 2022, 291 (5): 533–556. ISSN 0954-6820. PMID 35043499. S2CID 248119793. doi:10.1111/joim.13406 (英語). 
  181. ^ Seigneur, Erica; de Lecea, Luis. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery. 1 December 2020, 8: 100070. ISSN 2590-0986. S2CID 225129746. doi:10.1016/j.medidd.2020.100070 (英語). 
  182. ^ 182.0 182.1 Alhusaini, Mera; Eissa, Nermin; Saad, Ali K.; Beiram, Rami; Sadek, Bassem. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment、 Anxiety、 Depression、 and Sleep–Wake Cycle Disorder. Frontiers in Pharmacology. 2022, 13: 861094. ISSN 1663-9812. PMC 9198498 . PMID 35721194. doi:10.3389/fphar.2022.861094 . 
  183. ^ Shinde, Anil; Subramanian, Ramkumar; Palacharla, Raghava; Benade, Vijay; Abraham, Renny; Kamuju, Venkatesh; Pandey, Santosh; Badange, Rajesh; Achanta, Pramod Kumar; Nirogi, Ramakrishna. 004 Samelisant (SUVN-G3031)、 Differentiating features over current treatments of narcolepsy. Sleep. 1 May 2021, 44 (Supplement_2): A2. ISSN 0161-8105. doi:10.1093/sleep/zsab072.003. Recent research has described a procognitive effect of samelisant、 an inverse agonist of H3 receptors、 in animal models of schizophrenia [157]. Nevertheless、 more studies are required. 
  184. ^ Poulose, Shibu M.; Thangthaeng, Nopporn; Miller, Marshall G.; Shukitt-Hale, Barbara. Effects of pterostilbene and resveratrol on brain and behavior. Neurochemistry International. 1 October 2015, 89: 227–233. ISSN 0197-0186. PMID 26212523. S2CID 33577543. doi:10.1016/j.neuint.2015.07.017 (英語). 
  185. ^ McCormack, Denise; McFadden, David. A Review of Pterostilbene Antioxidant Activity and Disease Modification. Oxidative Medicine and Cellular Longevity. 4 April 2013, 2013: e575482. ISSN 1942-0900. PMC 3649683 . PMID 23691264. doi:10.1155/2013/575482  (英語). 
  186. ^ Buntwal, Luke; Sassi, Martina; Morgan, Alwena H.; Andrews, Zane B.; Davies, Jeffrey S. Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease. Trends in Endocrinology & Metabolism. 1 November 2019, 30 (11): 844–859 [2023-08-16]. ISSN 1043-2760. PMID 31445747. S2CID 201126380. doi:10.1016/j.tem.2019.07.001. (原始內容存檔於2023-04-17) (英語). 
  187. ^ Morgan, A. H.; Andrews, Z. B.; Davies, J. S. Less is more: Caloric regulation of neurogenesis and adult brain function. Journal of Neuroendocrinology. October 2017, 29 (10): e12512. PMID 28771924. S2CID 3070497. doi:10.1111/jne.12512 (英語). 
  188. ^ Harwell, Victoria; Fasinu, Pius. Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects. Medicines. 1 September 2020, 7 (9): 55. PMC 7554886 . PMID 32882898. doi:10.3390/medicines7090055 . 
  189. ^ Schlicker, Eberhard; Kathmann, Markus. Role of the Histamine H3 Receptor in the Central Nervous System. Histamine and Histamine Receptors in Health and Disease. Springer International Publishing. 2017: 277–299. ISBN 978-3-319-58194-1 (英語). 
  190. ^ 190.0 190.1 Lapin, Izyaslav. Phenibut (β-Phenyl-GABA): A Tranquilizer and Nootropic Drug. CNS Drug Reviews. 7 June 2006, 7 (4): 471–481. PMC 6494145 . PMID 11830761. doi:10.1111/j.1527-3458.2001.tb00211.x (英語). 
  191. ^ Kupats, Einars; Vrublevska, Jelena; Zvejniece, Baiba; Vavers, Edijs; Stelfa, Gundega; Zvejniece, Liga; Dambrova, Maija. Safety and Tolerability of the Anxiolytic and Nootropic Drug Phenibut: A Systematic Review of Clinical Trials and Case Reports. Pharmacopsychiatry. September 2020, 53 (5): 201–208. ISSN 0176-3679. PMID 32340063. S2CID 216593771. doi:10.1055/a-1151-5017 (英語). 
  192. ^ Jędrejko, Karol; Lazur, Jan; Muszyńska, Bożena. Risk Associated with the Use of Selected Ingredients in Food Supplements. Chemistry & Biodiversity. February 2021, 18 (2): e2000686. ISSN 1612-1872. PMID 33410585. S2CID 230821273. doi:10.1002/cbdv.202000686 (英語). 
  193. ^ Batalla, Albert; Bos, Julian; Postma, Amber; Bossong, Matthijs G. The Impact of Cannabidiol on Human Brain Function: A Systematic Review. Frontiers in Pharmacology. 2021, 11: 618184. ISSN 1663-9812. PMC 7858248 . PMID 33551817. doi:10.3389/fphar.2020.618184 . 
  194. ^ Colizzi, Marco; Ruggeri, Mirella; Bhattacharyya, Sagnik. Unraveling the Intoxicating and Therapeutic Effects of Cannabis Ingredients on Psychosis and Cognition. Frontiers in Psychology. 2020, 11: 833. ISSN 1664-1078. PMC 7247841 . PMID 32528345. doi:10.3389/fpsyg.2020.00833 . 
  195. ^ Daubner, Johanna; Arshaad, Muhammad Imran; Henseler, Christina; Hescheler, Jürgen; Ehninger, Dan; Broich, Karl; Rawashdeh, Oliver; Papazoglou, Anna; Weiergräber, Marco. Pharmacological Neuroenhancement: Current Aspects of Categorization、 Epidemiology、 Pharmacology、 Drug Development、 Ethics、 and Future Perspectives. Neural Plasticity. 13 January 2021, 2021: e8823383. ISSN 2090-5904. PMC 7817276 . PMID 33519929. doi:10.1155/2021/8823383  (英語). 
  196. ^ Zajdel, P; Bednarski, M; Sapa, J; Nowak, G. Ergotamine and nicergoline – facts and myths.. Pharmacol Rep. 2015, 67 (2): 360–363. PMID 25712664. S2CID 22768662. doi:10.1016/j.pharep.2014.10.010. 
  197. ^ 197.0 197.1 197.2 Gerbarg, Patricia L.; Brown, Richard P. Phytomedicines for Prevention and Treatment of Mental Health Disorders. Psychiatric Clinics of North America. March 2013, 36 (1): 37–47. PMID 23538075. doi:10.1016/j.psc.2012.12.004. 
  198. ^ Clayton, Paul; Hill, Mariko; Bogoda, Nathasha; Subah, Silma; Venkatesh, Ruchitha. Palmitoylethanolamide: A Natural Compound for Health Management. International Journal of Molecular Sciences. January 2021, 22 (10): 5305. ISSN 1422-0067. PMC 8157570 . PMID 34069940. doi:10.3390/ijms22105305  (英語). 
  199. ^ Singh, Alok; Purohit, Vinay. A critical review of pyritinol. Drugs & Therapy Perspectives. 1 June 2019, 35 (6): 278–282. ISSN 1179-1977. S2CID 256373631. doi:10.1007/s40267-019-00623-x (英語). 
  200. ^ 200.0 200.1 200.2 200.3 Zimerman, Maximo; Nitsch, M; Giraux, P; Gerloff, C; Cohen, LG; Hummel, FC. Neuroenhancement of the Aging Brain: Restoring Skill Acquisition in Old Subjects. Annals of Neurology. 2013, 73 (1): 10–15. PMC 4880032 . PMID 23225625. doi:10.1002/ana.23761. 
  201. ^ 201.0 201.1 201.2 Meinzer, Marcus; Antonenko, D; Lindenberg, R; Hetzer, S; Ulm, L; Avirame, K; Flaisch, T; Flöel, A. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. The Journal of Neuroscience. 2012, 32 (5): 1859–1866. PMC 6703352 . PMID 22302824. doi:10.1523/JNEUROSCI.4812-11.2012. 
  202. ^ Grover, Shrey; Wen, Wen; Viswanathan, Vighnesh; Gill, Christopher T.; Reinhart, Robert M. G. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nature Neuroscience. September 2022, 25 (9): 1237–1246. ISSN 1546-1726. PMC 10068908 . PMID 35995877. S2CID 251742309. doi:10.1038/s41593-022-01132-3 (英語). 
  203. ^ 203.0 203.1 203.2 203.3 Kupsch, Andreas; Benecke, Reiner; Müller, Jörg; Trottenberg, Thomas; Schneider, Gerd-Helge; Poewe, Werner; Eisner, Wilhelm; Wolters, Alexander; Müller, Jan-Uwe; Deuschl, Günther; Pinsker, Marcus O.; Skogseid, Inger Marie; Roeste, Geir Ketil; Vollmer-Haase, Juliane; Brentrup, Angela; Krause, Martin; Tronnier, Volker; Schnitzler, Alfons; Voges, Jürgen; Nikkhah, Guido; Vesper, Jan; Naumann, Markus; Volkmann, Jens; Deep-Brain Stimulation for Dystonia Study Group. Pallidal Deep-Brain Stimulation in Primary Generalized or Segmental Dystonia. New England Journal of Medicine. 2006, 355 (19): 1978–1990. PMID 17093249. doi:10.1056/NEJMoa063618. 
  204. ^ Notbohm, Annika; Kurths, Jürgen; Herrmann, Christoph S. Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses. Frontiers in Human Neuroscience. 2016, 10: 10. ISSN 1662-5161. PMC 4737907 . PMID 26869898. doi:10.3389/fnhum.2016.00010 . 
  205. ^ Ding, Nai; Simon, Jonathan Z. Cortical entrainment to continuous speech: functional roles and interpretations. Frontiers in Human Neuroscience. 2014, 8: 311. ISSN 1662-5161. PMC 4036061 . PMID 24904354. doi:10.3389/fnhum.2014.00311 . 
  206. ^ Thaut, Michael H., Altenmüller, Eckart; Finger, Stanley; Boller, François , 編, Chapter 13 - The discovery of human auditory–motor entrainment and its role in the development of neurologic music therapy, Progress in Brain Research, Music, Neurology, and Neuroscience: Evolution, the Musical Brain, Medical Conditions, and Therapies (Elsevier), 2015-01-01, 217: 253–266 [2021-12-01], ISBN 9780444635518, PMID 25725919, doi:10.1016/bs.pbr.2014.11.030, (原始內容存檔於2017-07-28) (英語) 
  207. ^ Cantor, David S.; Evans, James R. Clinical Neurotherapy: Application of Techniques for Treatment. Academic Press. 2013-10-18. ISBN 9780123972910. 
  208. ^ Diep, Charmaine; Ftouni, Suzanne; Manousakis, Jessica E; Nicholas, Christian L; Drummond, Sean P A; Anderson, Clare. Acoustic slow wave sleep enhancement via a novel, automated device improves executive function in middle-aged men. Sleep. 2019-11-06, 43 (1). ISSN 0161-8105. PMID 31691831. doi:10.1093/sleep/zsz197 . 
  209. ^ Michael, Elizabeth; Covarrubias, Lorena Santamaria; Leong, Victoria; Kourtzi, Zoe. Learning at your brain's rhythm: individualized entrainment boosts learning for perceptual decisions. Cerebral Cortex. 9 November 2022, 33 (9): 5382–5394. PMC 10152088 . PMID 36352510. doi:10.1093/cercor/bhac426 . 
  210. ^ Dündar-Coecke, Selma. Future avenues for education and neuroenhancement. New Ideas in Psychology. 1 December 2021, 63: 100875 [2023-08-16]. ISSN 0732-118X. S2CID 236312270. doi:10.1016/j.newideapsych.2021.100875. (原始內容存檔於2023-04-22) (英語). 
  211. ^ Voinea, Cristina; Vică, Constantin; Mihailov, Emilian; Savulescu, Julian. The Internet as Cognitive Enhancement. Science and Engineering Ethics (Springer Science and Business Media LLC). 2020-04-06, 26 (4): 2345–2362. ISSN 1353-3452. doi:10.1007/s11948-020-00210-8. 
  212. ^ Naeem, Noor-i-Kiran; Yusoff, Muhamad Saiful Bahri; Hadie, Siti Nurma Hanim; Ismail, Irwan Mahazir; Iqbal, Haris. Understanding the Functional Components of Technology-Enhanced Learning Environment in Medical Education: A Scoping Review. Medical Science Educator. 28 February 2023, 33 (2): 595–609. ISSN 2156-8650. PMC 9972326 . PMID 37251205. S2CID 257254561. doi:10.1007/s40670-023-01747-6 (英語). 
  213. ^ 213.0 213.1 213.2 Drigas, Athanasios; Karyotaki, Maria. Learning Tools and Applications for Cognitive Improvement. International Journal of Engineering Pedagogy (IJEP). 12 June 2014, 4 (3): 71. doi:10.3991/ijep.v4i3.3665. 
  214. ^ Ortiz-Ospina, Esteban; Giattino, Charlie; Roser, Max. Time Use. Our World in Data. 29 November 2020 [11 March 2023]. 
  215. ^ 215.0 215.1 Vedechkina, Maria; Borgonovi, Francesca. A Review of Evidence on the Role of Digital Technology in Shaping Attention and Cognitive Control in Children. Frontiers in Psychology. 2021, 12: 611155. ISSN 1664-1078. PMC 7943608 . PMID 33716873. doi:10.3389/fpsyg.2021.611155 . 
  216. ^ Hutchinson, Amanda D.; Wilson, Carlene. Improving nutrition and physical activity in the workplace: a meta-analysis of intervention studies. Health Promotion International. 6 July 2011, 27 (2): 238–249. ISSN 1460-2245. PMID 21733915. doi:10.1093/heapro/dar035. 
  217. ^ Gashaj, Venera; Dapp, Laura C.; Trninic, Dragan; Roebers, Claudia M. The effect of video games, exergames and board games on executive functions in kindergarten and 2nd grade: An explorative longitudinal study. Trends in Neuroscience and Education. 1 December 2021, 25: 100162. ISSN 2211-9493. PMID 34844694. S2CID 237631258. doi:10.1016/j.tine.2021.100162 (英語). 
  218. ^ Caton, Amy; Bradshaw-Ward, Danita; Kinshuk, Kinshuk; Savenye, Wilhelmina. Future Directions for Digital Literacy Fluency using Cognitive Flexibility Research: A Review of Selected Digital Literacy Paradigms and Theoretical Frameworks. Journal of Learning for Development. 21 November 2022, 9 (3): 381–393 [2023-08-16]. ISSN 2311-1550. S2CID 254004509. doi:10.56059/jl4d.v9i3.818. (原始內容存檔於2023-04-08) (英語). 
  219. ^ Wang, Feng; Kinzie, Mable B.; McGuire, Patrick; Pan, Edward. Applying Technology to Inquiry-Based Learning in Early Childhood Education. Early Childhood Education Journal. 1 March 2010, 37 (5): 381–389. ISSN 1573-1707. S2CID 143666182. doi:10.1007/s10643-009-0364-6 (英語). 
  220. ^ García-Pérez, Daniel; de Aldama, Carlos; Aguirre-Camacho, Aldo; González-Cuevas, Gustavo. Critical Thinking Assessment of Internet Inquiry and Argumentation in Text Generation. INTED2021 Proceedings 1. March 2021: 5341–5347. ISBN 978-84-09-27666-0. S2CID 233801659. doi:10.21125/inted.2021.1091. 
  221. ^ Setyowidodo, I; Jatmiko, B; Susantini, E; Handayani, A D; Pramesti, Y S. The role of science project based peer interaction on improving collaborative skills and physical problem solving: a mini review. Journal of Physics: Conference Series. 1 April 2020, 1521 (2): 022032. Bibcode:2020JPhCS1521b2032S. S2CID 219448364. doi:10.1088/1742-6596/1521/2/022032. 
  222. ^ Norman, Geoff. Teaching basic science to optimize transfer. Medical Teacher. 1 January 2009, 31 (9): 807–811. ISSN 0142-159X. PMID 19811185. S2CID 26691454. doi:10.1080/01421590903049814. 
  223. ^ Kalyuga, Slava; Renkl, Alexander; Paas, Fred. Facilitating Flexible Problem Solving: A Cognitive Load Perspective. Educational Psychology Review. 1 June 2010, 22 (2): 175–186. ISSN 1573-336X. S2CID 56420974. doi:10.1007/s10648-010-9132-9 (英語). 
  224. ^ Edgren, Nora; Dubljević, Veljko. The ubiquuity of the fallacy of composition in cognitive enhancement and in education. Theoretical Medicine and Bioethics. 1 February 2023, 44 (1): 41–56. ISSN 1573-1200. PMID 36273366. S2CID 253081249. doi:10.1007/s11017-022-09595-y (英語). 
  225. ^ Lee, Yong-Seok; Silva, Alcino J. The molecular and cellular biology of enhanced cognition. Nature Reviews Neuroscience. February 2009, 10 (2): 126–140. ISSN 1471-0048. PMC 2664745 . PMID 19153576. doi:10.1038/nrn2572 (英語). 
  226. ^ George Church told us why he's listing "superhuman" gene hacks. Futurism. [25 July 2021]. (原始內容存檔於2023-09-12). 
  227. ^ Protective alleles. arep.med.harvard.edu. [25 July 2021]. (原始內容存檔於2023-09-12) (英語). 
  228. ^ Eising, Else; Mirza-Schreiber, Nazanin; de Zeeuw, Eveline L.; Wang, Carol A.; Truong, Dongnhu T.; Allegrini, Andrea G.; Shapland, Chin Yang; Zhu, Gu; Wigg, Karen G.; Gerritse, Margot L.; et al. Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences. 30 August 2022, 119 (35): e2202764119. Bibcode:2022PNAS..11902764E. ISSN 0027-8424. PMC 9436320 . PMID 35998220. doi:10.1073/pnas.2202764119  (英語). 
  229. ^ O』Connor, Cliodhna; Nagel, Saskia K. Neuro-Enhancement Practices across the Lifecourse: Exploring the Roles of Relationality and Individualism. Frontiers in Sociology (Frontiers Media SA). 2017-03-02, 2. ISSN 2297-7775. doi:10.3389/fsoc.2017.00001. 
  230. ^ 230.0 230.1 Antal, Andrea; Luber, Bruce; Brem, Anna-Katharine; Bikson, Marom; Brunoni, Andre R.; Cohen Kadosh, Roi; Dubljević, Veljko; Fecteau, Shirley; Ferreri, Florinda; Flöel, Agnes; Hallett, Mark; Hamilton, Roy H.; Herrmann, Christoph S.; Lavidor, Michal; Loo, Collen; Lustenberger, Caroline; Machado, Sergio; Miniussi, Carlo; Moliadze, Vera; Nitsche, Michael A; Rossi, Simone; Rossini, Paolo M.; Santarnecchi, Emiliano; Seeck, Margitta; Thut, Gregor; Turi, Zsolt; Ugawa, Yoshikazu; Venkatasubramanian, Ganesan; Wenderoth, Nicole; Wexler, Anna; Ziemann, Ulf; Paulus, Walter. Non-invasive brain stimulation and neuroenhancement. Clinical Neurophysiology Practice. 1 January 2022, 7: 146–165. ISSN 2467-981X. PMC 9207555 . PMID 35734582. doi:10.1016/j.cnp.2022.05.002 (英語). 
  231. ^ Garmany, Armin; Yamada, Satsuki; Terzic, Andre. Longevity leap: mind the healthspan gap. npj Regenerative Medicine. 23 September 2021, 6 (1): 57. ISSN 2057-3995. PMC 8460831 . PMID 34556664. doi:10.1038/s41536-021-00169-5  (英語). 
  232. ^ "nootropic"[Title/Abstract] OR "smart drug"[Title/Abstract] OR "smart drugs"[Title/Abstract] OR "nootropics"[Title/Abstract] OR "cognitive enhancer"[Title/Abstract] - Search Results - PubMed. PubMed. [20 March 2023] (英語). 
  233. ^ 233.00 233.01 233.02 233.03 233.04 233.05 233.06 233.07 233.08 233.09 Lucke, Jayne C.; Bell, Stephanie K.; Patridge, Bradley J.; Hall, Wayne D. Academic Doping or Viagra for the brain?. EMBO Rep. 2011, 12 (3): 197–201. PMC 3059919 . PMID 21311560. doi:10.1038/embor.2011.15. 
  234. ^ 234.0 234.1 Schuijer, Jantien W.; de Jong, Irja M.; Kupper, Frank; van Atteveldt, Nienke M. Transcranial Electrical Stimulation to Enhance Cognitive Performance of Healthy Minors: A Complex Governance Challenge. Frontiers in Human Neuroscience. 2017, 11: 142. ISSN 1662-5161. PMC 5366312 . PMID 28396631. doi:10.3389/fnhum.2017.00142 . 
  235. ^ The Ethics and Challenges Surrounding Neuroenhancement. NC State News. 8 May 2019 [19 March 2023]. (原始內容存檔於2023-04-08). 
  236. ^ Doctor's Op-Ed: Consumers are losing trust in the supplements industry. Here's why we need to earn it back.. Nutritional Outlook. September 2021 [24 April 2022]. (原始內容存檔於2023-06-10) (英語). 
  237. ^ Prohibited, unlisted, even dangerous ingredients turn up in dietary supplements. Washington Post. [24 April 2022]. (原始內容存檔於2021-09-23). 
  238. ^ Eisenstein, Michael. Setting Standards for Supplements. Scientific American. [19 March 2023]. (原始內容存檔於2023-08-06) (英語). 
  239. ^ Glisson, James K. Dietary Supplements: Safety Issues and Quality Control. Archives of Internal Medicine. 14 March 2011, 171 (5): 476–7; author reply 477. PMID 21403052. doi:10.1001/archinternmed.2011.53. 
  240. ^ 240.0 240.1 Long, Chiau Soon; Kumaran, Harshily; Goh, Khang Wen; Bakrin, Faizah Safina; Ming, Long Chiau; Rehman, Inayat Ur; Dhaliwal, Jagjit Singh; Hadi, Muhammad Abdul; Sim, Yee Wai; Tan, Ching Siang. Online Pharmacies Selling Prescription Drugs: Systematic Review. Pharmacy. April 2022, 10 (2): 42. ISSN 2226-4787. PMC 9031186 . PMID 35448701. doi:10.3390/pharmacy10020042  (英語). 
  241. ^ Are Dietary Supplements Safe?. www.cancer.org. [19 March 2023]. (原始內容存檔於2023-04-08) (英語). 
  242. ^ El Azab, Noha F.; Abdelaal, Sarah H.; Hassan, Said A.; El-Kosasy, Amira M. Dietary supplement mislabelling: case study on selected slimming products by developing a green isocratic HPLC method for their quality control. Scientific Reports. 24 December 2022, 12 (1): 22305. Bibcode:2022NatSR..1222305E. ISSN 2045-2322. PMC 9790016 . PMID 36566240. doi:10.1038/s41598-022-24830-1 (英語). 
  243. ^ Grohn, Kristopher J.; Moyer, Brandon S.; Wortel, Danique C.; Fisher, Cheyanne M.; Lumen, Ellie; Bianchi, Anthony H.; Kelly, Kathleen; Campbell, Paul S.; Hagrman, Douglas E.; Bagg, Roger G.; Clement, James; Wolfe, Aaron J.; Basso, Andrea; Nicoletti, Cristina; Lai, Giovanni; Provinciali, Mauro; Malavolta, Marco; Moody, Kelsey J. C60 in olive oil causes light-dependent toxicity and does not extend lifespan in mice. GeroScience. 1 April 2021, 43 (2): 579–591. ISSN 2509-2723. PMC 8110650 . PMID 33123847. S2CID 226206079. doi:10.1007/s11357-020-00292-z (英語). 
  244. ^ Clausen, Angela; Schlueter, Kirsten. Motives for Using Food Supplements by Otherwise Healthy Adults: Historic and Current Perspectives with Special Focus on Germany. Health Behavior and Policy Review. 1 March 2017, 4 (2): 129–141. doi:10.14485/HBPR.4.2.4. 
  245. ^ Sattler, S., Sauer, C., Mehlkop, G., Graeff, P. The Rationale for Consuming Cognitive Enhancement Drugs in University Students and Teachers. PLOS ONE. 2013, 8 (7): e68821. Bibcode:2013PLoSO...868821S. PMC 3714277 . PMID 23874778. doi:10.1371/journal.pone.0068821 . 
  246. ^ 246.0 246.1 Sattler, S., Forlini, C., Racine, E., Sauer, C. Impact of Contextual Factors and Substance Characteristics on Perspectives toward Cognitive Enhancement. PLOS ONE. 2013, 8 (8): e71452. Bibcode:2013PLoSO...871452S. PMC 3733969 . PMID 23940757. doi:10.1371/journal.pone.0071452 . 
  247. ^ 247.0 247.1 247.2 Wiegel C., Sattler S., Göritz A. S. Work-related stress and cognitive enhancement among university teachers. Anxiety, Stress & Coping. 2015, 29 (1): 1–18. PMID 25747817. S2CID 22273733. doi:10.1080/10615806.2015.1025764. 
  248. ^ Anomaly, Jonathan; Gyngell, Christopher; Savulescu, Julian. Great minds think different: Preserving cognitive diversity in an age of gene editing. Bioethics. January 2020, 34 (1): 81–89. ISSN 0269-9702. PMC 6973122 . PMID 30941781. doi:10.1111/bioe.12585 (英語). 
  249. ^ Gyngell, Chris; Easteal, Simon. Cognitive Diversity and Moral Enhancement. Cambridge Quarterly of Healthcare Ethics. January 2015, 24 (1): 66–74. ISSN 0963-1801. PMID 25473859. doi:10.1017/S0963180114000310 (英語). 
  250. ^ Veit, Walter. Cognitive Enhancement and the Threat of Inequality. Journal of Cognitive Enhancement. 1 December 2018, 2 (4): 404–410. ISSN 2509-3304. S2CID 256624542. doi:10.1007/s41465-018-0108-x (英語). 
  251. ^ Hernandez, Joe. Billionaire Mark Cuban launches online pharmacy aimed at lowering generic drug prices. [20 March 2023]. (原始內容存檔於2022-06-25). 
  252. ^ Online Pharmacies Can Help You Save Big on Prescription Drugs - Consumer Reports. 18 February 2023 [20 March 2023]. (原始內容存檔於2023-02-18). 
  253. ^ Flower, R. The Osler Lecture 2012 'Pharmacology 2.0, medicines, drugs and human enhancement'. QJM. 1 September 2012, 105 (9): 823–830. PMID 22723455. doi:10.1093/qjmed/hcs105. 
  254. ^ Leary, Timothy. The politics of ecstasy. Berkeley, CA: Ronin Publ. 1998: p.95. ISBN 978-1-57951-031-2. 
  255. ^ Boire, Part I
  256. ^ Boire, Richard Glen. On Cognitive Liberty Part II. Journal of Cognitive Liberties. 2000, 1 (2) [2015-05-16]. (原始內容存檔於2017-02-10). 
  257. ^ Keeping Freedom in Mind. Center for Cognitive Liberty and Ethics. [3 May 2014]. (原始內容存檔於24 April 2018). 
  258. ^ Blitz, 1058-1060
  259. ^ 259.0 259.1 Sententia (2013), 356
  260. ^ Sententia (2013), 355-6
  261. ^ 261.0 261.1 Ienca, Marcello; Andorno, Roberto. Towards new human rights in the age of neuroscience and neurotechnology. Life Sciences, Society and Policy. 26 April 2017, 13 (1): 5. ISSN 2195-7819. PMC 5447561 . PMID 28444626. doi:10.1186/s40504-017-0050-1. 
  262. ^ Bublitz, Christoph. Cognitive Liberty or the International Human Right to Freedom of Thought. Handbook of Neuroethics. Springer Netherlands. 2015: 1309–1333. ISBN 978-94-007-4707-4 (英語). 
  263. ^ Corbyn, Zoë. Prof Nita Farahany: 'We need a new human right to cognitive liberty'. The Observer. 4 March 2023 [10 March 2023]. (原始內容存檔於2023-06-14). 
  264. ^ Tech that aims to read your mind and probe your memories is already here. MIT Technology Review. [20 March 2023]. (原始內容存檔於2023-06-06) (英語). 
  265. ^ Muñoz, José M. Achieving cognitive liberty The Battle for Your Brain: Defending the Right to Think Freely in the Age of Neurotechnology Nita A. Farahany St. Martin's Press, 2023. 288 pp.. Science. 17 March 2023, 379 (6637): 1097 [20 March 2023]. PMID 36927033. S2CID 257558736. doi:10.1126/science.adf8306. (原始內容存檔於2023-03-24) (英語). 
  266. ^ In the face of neurotechnology advances, Chile passes 'neuro rights' law. techxplore.com. [26 January 2022]. (原始內容存檔於2023-06-01) (英語). 
  267. ^ Zwart H. Limitless as a neuro-pharmaceutical experiment and as a Daseinsanalyse: on the use of fiction in preparatory debates on cognitive enhancement (PDF). Medicine, Health Care and Philosophy. 2014, 17 (1): 29–38 [2023-08-17]. PMID 23585022. S2CID 29893291. doi:10.1007/s11019-013-9481-5. (原始內容 (PDF)存檔於2019-05-04). 
  268. ^ 268.0 268.1 268.2 268.3 Eickenhorst, Patrick; Vitzthum, Karin; Klapp, Burghard F.; Groneberg, David; Mache, Stefanie. Neuroenhancement Among German University Students: Motives, Expectations, and Relationship with Psychoactive Lifestyle Drugs. Journal of Psychoactive Drugs. 2012, 44 (5): 418–427. PMID 23457893. S2CID 6621896. doi:10.1080/02791072.2012.736845. 
  269. ^ 269.0 269.1 Sattler S., Wiegel C. Cognitive test anxiety and cognitive enhancement: the influence of students' worries on their use of performance-enhancing drugs. Substance Use and Misuse. 2013, 48 (3): 220–32. PMID 23302063. S2CID 34698382. doi:10.3109/10826084.2012.751426. 
  270. ^ Sattler S., Sauer C., Mehlkop G., Graeff P. The Rationale for Consuming Cognitive Enhancement Drugs in University Students and Teachers. PLOS ONE. 2013, 8 (7): e68821. Bibcode:2013PLoSO...868821S. PMC 3714277 . PMID 23874778. doi:10.1371/journal.pone.0068821 . 
  271. ^ Sattler S., Schunck R. Associations Between the Big Five Personality Traits and the Non-Medical Use of Prescription Drugs for Cognitive Enhancement. Frontiers in Psychology. 2016, 6: 1971. PMC 4700267 . PMID 26779083. doi:10.3389/fpsyg.2015.01971 . 
  272. ^ Sattler, S., Mehlkop, G., Graeff, P., Sauer, C. Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics. Substance Abuse Treatment, Prevention, and Policy. 2014, 9: 8. PMC 3928621 . PMID 24484640. doi:10.1186/1747-597X-9-8. 

擴展閱讀