离散随机变量的联合分布
对离散随机变量 而言,联合分布概率质量函数 为
P
r
(
X
=
x
&
Y
=
y
)
{\displaystyle Pr(X=x\,\&\,Y=y)}
,即
P
(
X
=
x
a
n
d
Y
=
y
)
=
P
(
Y
=
y
|
X
=
x
)
P
(
X
=
x
)
=
P
(
X
=
x
|
Y
=
y
)
P
(
Y
=
y
)
.
{\displaystyle P(X=x\;\mathrm {and} \;Y=y)\;=\;P(Y=y|X=x)P(X=x)=P(X=x|Y=y)P(Y=y).\;}
因为是概率分布函数,所以必须有
∑
x
∑
y
P
(
X
=
x
a
n
d
Y
=
y
)
=
1.
{\displaystyle \sum _{x}\sum _{y}P(X=x\ \mathrm {and} \ Y=y)=1.\;}
连续随机变量的联合分布
独立变量的联合分布
多元联合分布
2元联合分布可以推广到任意多元的情况
X
1
,
…
,
X
n
{\displaystyle X_{1},\ldots ,X_{n}}
f
X
1
,
…
,
X
n
(
x
1
,
…
,
x
n
)
=
f
X
n
|
X
1
,
…
,
X
n
−
1
(
x
n
|
x
1
,
…
,
x
n
−
1
)
f
X
1
,
…
,
X
n
−
1
(
x
1
,
…
,
x
n
−
1
)
.
{\displaystyle f_{X_{1},\ldots ,X_{n}}(x_{1},\ldots ,x_{n})=f_{X_{n}|X_{1},\ldots ,X_{n-1}}(x_{n}|x_{1},\ldots ,x_{n-1})f_{X_{1},\ldots ,X_{n-1}}(x_{1},\ldots ,x_{n-1}).}
相关条目
外部链接
^ Feller, William. An introduction to probability theory and its applications, vol 1, 3rd edition. 1957: 217–218. ISBN 978-0471257080 (Eng) .