勒贝格测度

數學形式化集合的長度,面積或體積

测度论中,勒贝格测度(Lebesgue measure)是欧几里得空间上的标准测度。对维数为1,2,3的情况,勒贝格测度就是通常的长度、面积、体积。它广泛应用于实分析,特别是用于定义勒贝格积分。可以赋予勒贝格测度的集合称为勒贝格可测集;勒贝格可测集 A测度记作 λ (A) 。一般來說,我們允許一个集合的勒贝格测度为 ,但是即使如此,在假设选择公理成立时,Rn 仍有勒贝格不可测的子集。不可测集的“奇特”行为导致了巴拿赫-塔斯基悖论这样的命题,它是选择公理的一个结果。

勒贝格测度以法国数学家昂利·勒贝格命名。勒贝格于1901年首次提出这一测度,次年又给出勒贝格积分的定义,并收录进他的学位论文中。

问题起源

人们知道,区间的长度可以定义为端点值之差。若干个不交区间的并的长度应当是它们的长度之和。于是人们希望将长度的概念推广到比区间更复杂的集合。

我们想构造一个映射 m ,它能将实数集的子集 E 映射到非负实数 m(E) ,並称这個数为集合 E测度。最理想的情况下,m 应该具有以下性质:

  • m 对于实数集的所有子集 E 都有定义。
  • 对于一个区间 [a, b]m([a, b]) 应当等于其长度 ba
  • m 具有可数可加性。如果 (En) 是一列不相交的集合,并且 m 在其上有定义,那么   ,其中 表示聯集
  • m 具有平移不变性。設集合 EE+k = {x+k : xE(即將 E 的每個元素各加上同一個實數 k 所得到的集合),則 m(E+k) = m(E)

遗憾的是,这样的映射是不存在的。人们只能退而求其次,寻找满足其中部分条件的映射。勒贝格测度是满足后三条性质的例子。另一个例子是若尔当测度,它只满足有限可加性。

定义

区间 的长度定义为 。对 ,勒贝格外测度定义为

对每一列能覆盖 的开区间 ,作长度和 。所有这些 组成一个有下界的数集,下确界称为勒贝格外测度,记做 

勒贝格测度定义在勒贝格σ代数上。若集合 滿足:

對所有 ,皆有 

 為勒贝格σ代数的元素,稱為勒貝格可測集。对勒贝格可测集,其勒贝格测度 就定義為勒贝格外测度 

不在勒贝格σ代数中的集合不是勒贝格可测的,这样的集合确实存在,故勒贝格σ代数严格包含于 的幂集。

例子

  • 任何区间都是勒贝格可测的。闭区间 、开区间 的勒贝格测度都等于区间长度 
  • 如果 A 是区间 [a, b] 和 [c, d]的笛卡尔积,则它是一个长方形,测度为它的面积 (ba)(dc)。
  • 博雷尔集都是勒贝格可测的。反之不然,存在不是博雷尔集的勒贝格可测集。
  • 可数集的勒贝格测度为0。特别是,有理数集的勒贝格测度为0,尽管有理数集是稠密的。
  • 康托尔集是一个勒贝格测度为零的不可数集的例子。
  • 假设决定性公理成立,则实数集的所有子集都是勒贝格可测的。假设选择公理成立,则可以构造出勒贝格不可测的集合,例如维塔利集。决定性公理与选择公理是不相容的。
  • 奥斯古德曲线(Osgood curve)是平面简单曲线,但具有大于0的勒贝格测度。龙形曲线是另一个例子。

性质

設集合 AB 是在 Rn 上的集合。勒贝格测度有如下的性质:

  1. 如果 A 是一列区间 (In)笛卡爾積   ,則 A 是勒贝格可测的,并且   ,其中 | I | 表示区间 I 的长度。
  2. 如果 A有限个或可数个两两互不相交的勒贝格可测集 (En)并集,则 A 也是勒贝格可测的,并且  
  3. 如果 A 是勒贝格可测的,那么它相对于 的补集也是可测的。
  4. 对于每个勒贝格可测集 A 
  5. 如果 AB 是勒贝格可测的,且 AB ,則  
  6. 可数多个勒贝格可测集的交集或者并集,仍然是勒贝格可测的。
  7.  上的博雷爾集(即由開集經可數多次交、並、差運算得到的集合)都是勒贝格可测的。[1][2]
  8. 勒贝格可测集“几乎”是开集,也“几乎”是闭集。具体来说, 是勒贝格可测集当且仅当对任意的 存在开集 与闭集 使得  。此性质曾用来定义勒贝格可测性。(见勒贝格测度的正则性定理)
  9. 勒贝格测度既是局部有限的,又是内正则的,所以是拉东测度
  10. 非空开集的勒贝格测度严格大于0,所以勒贝格测度的支集是全空间 
  11. 如果 A 是勒贝格零测集,即   ,则 A 的任何一个子集也是勒贝格零测集。
  12. 如果 A 是勒贝格可测的,且 B = {x+k : xA(即將 A 平移 k 個單位),則 B 也是勒贝格可测的,并且  
  13. 如果 A 是勒贝格可测的,且 B = {kx : xA(即將 A 縮放 k 倍, ),則 B 也是勒贝格可测的,并且  
  14. 更一般地,设 T 是一个线性变换det(T) 為其行列式。如果 A 是勒贝格可测的,则 T(A) 也是勒贝格可测的,并且  
  15. f 是一个從 A 上的连续单射函数。如果 A 是勒贝格可测的,则 f(A) 也是勒贝格可测的。

简要地说, 的勒贝格可测子集组成一个包含所有区间的笛卡尔积的σ-代数,且 λ 是其上唯一的完备的、平移不变的、满足  的测度。

勒贝格测度是σ-有限测度

零测集

 的子集 A零测集,如果对于任意 A 都可以用可数多个盒(即 n 個区间的乘积)来覆盖,且其总体积最多为 。所有可数集都是零测集。

如果 的子集的豪斯多夫维数小于 ,那么它是关于 维勒贝格测度的零测集。在这里,豪斯多夫维数是相对于 上的欧几里得度量(或任何与其利普希茨等价的度量)而言。另一方面,一个集合可能拓扑维数小于 ,但具有正的 维勒贝格测度。一个这样的例子是史密斯-沃尔泰拉-康托尔集,它的拓扑维数为0,但1维勒贝格测度为正数。

为了证明某个集合A是勒贝格可测的,我们通常尝试寻找一个“较好”的集合B,与A对称差是零测集,然后证明B可以用开集或闭集的可数交集和并集生成。

勒贝格测度的构造

勒贝格测度的现代構造基于外测度[3],并应用卡拉西奥多里扩张定理。

固定  中的盒子是形如 的集合,其中 ,连乘号代表笛卡尔积。盒子的体积定义为 

对于 的任何子集A,可以定义它的外测度 

 是可数个盒子的集合,它们的并集覆盖了 

然后定义集合A为勒贝格可测的,如果对于所有集合 ,都有:

 

这些勒贝格可测的集合形成了一个σ代数。对于任何勒贝格可测的集合A, 其勒贝格测度定义为 

勒贝格不可测集合的存在性是选择公理的结果。根据维塔利定理,存在实数R的一个勒贝格不可测的子集。如果A 的子集,且其测度为正,那么A便有勒贝格不可测的子集。

1970年,Robert M. Solovay证明了,在不带选择公理的策梅洛-弗兰克尔集合论中,勒贝格不可测集的存在性是不可证的(见Solovay模型)。

与其他测度的关系

A 博雷尔可測,則其博雷爾測度与勒贝格测度一致;然而,更多的勒贝格可测集是博雷尔不可测的。博雷尔测度是平移不变的,但不是完备的。

哈尔测度可以定义在任何局部紧群上,是勒贝格测度的一个推广(带有加法的 是一个局部紧群)。

豪斯多夫测度(参见豪斯多夫维数)是勒贝格测度的一个推广,对于测量 的维数比n低的子集是很有用的,例如R³上的曲线、曲面,以及分形集合。注意不能把豪斯多夫测度与豪斯多夫维数混淆。

可以证明,無法在无穷维空间上定義类似的勒贝格测度。

参看

參考文獻

  1. ^ Asaf Karagila. What sets are Lebesgue-measurable?. math stack exchange. [26 September 2015]. 
  2. ^ Asaf Karagila. Is there a sigma-algebra on R strictly between the Borel and Lebesgue algebras?. math stack exchange. [26 September 2015]. 
  3. ^ Royden, H.L. Real analysis 3rd. New York: Macmillan. 1988: 56. ISBN 978-0024041517.