自旋與費米子類比
接下來證明如何從一維自旋-1/2粒子構成的自旋鏈映射到費米子.
將自旋-1/2泡利算符作用到1D鏈的上的第j個晶座, . 選取 反對易算符 and , 可以發現 , 這些可從費米子的產生湮滅算符中得到。我們可以嘗試,
-
-
-
這樣,可以得到同晶格上費米子關係 , 但對不同的晶格,有關係 , 其中 , 如此不同晶格上的自旋的對易關係不同於反對易的費米子。人們必須彌補這個問題。
Jordan–Wigner 變換
能夠恢復從自旋算符到真正費米子對易關係的變換於1928由 Jordan 和 Wigner 提出[1]。此為 Klein 變換的特殊情況。考慮費米子鏈,定義一組新算符
-
-
-
與之前的定義相差一個相 。此相與場模 下佔據的費米子數有關。如果佔有模數為偶,此相等於 ; 佔有模數為奇,相為 。表示為
-
最後一個等式使用了
這樣,變換後的自旋算符具有正確的費米子對易關係
-
逆變換為
-
-
-
另見
參考文獻
- ^ P. Jordan and E. Wigner, Über das Paulische Äquivalenzverbot, Zeitschrift für Physik 47, No. 9. (1928), pp. 631-651.